Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pareto distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Statistical inference== ===Estimation of parameters=== The [[likelihood function]] for the Pareto distribution parameters ''Ξ±'' and ''x''<sub>m</sub>, given an independent [[sample (statistics)|sample]] ''x'' = (''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x<sub>n</sub>''), is : <math>L(\alpha, x_\mathrm{m}) = \prod_{i=1}^n \alpha \frac {x_\mathrm{m}^\alpha} {x_i^{\alpha+1}} = \alpha^n x_\mathrm{m}^{n\alpha} \prod_{i=1}^n \frac {1}{x_i^{\alpha+1}}.</math> Therefore, the logarithmic likelihood function is : <math>\ell(\alpha, x_\mathrm{m}) = n \ln \alpha + n\alpha \ln x_\mathrm{m} - (\alpha + 1) \sum_{i=1} ^n \ln x_i.</math> It can be seen that <math>\ell(\alpha, x_\mathrm{m})</math> is monotonically increasing with ''x''<sub>m</sub>, that is, the greater the value of ''x''<sub>m</sub>, the greater the value of the likelihood function. Hence, since ''x'' β₯ ''x''<sub>m</sub>, we conclude that : <math>\widehat x_\mathrm{m} = \min_i {x_i}.</math> To find the [[estimator]] for ''Ξ±'', we compute the corresponding partial derivative and determine where it is zero: : <math>\frac{\partial \ell}{\partial \alpha} = \frac{n}{\alpha} + n \ln x_\mathrm{m} - \sum _{i=1}^n \ln x_i = 0.</math> Thus the [[maximum likelihood]] estimator for ''Ξ±'' is: : <math>\widehat \alpha = \frac{n}{\sum _i \ln (x_i/\widehat x_\mathrm{m}) }.</math> The expected statistical error is:<ref>{{cite journal |author=M. E. J. Newman |year=2005 |title=Power laws, Pareto distributions and Zipf's law |journal=[[Contemporary Physics]] |volume=46 |issue=5 |pages=323β51| arxiv=cond-mat/0412004 |doi=10.1080/00107510500052444 |bibcode=2005ConPh..46..323N|s2cid=202719165 }}</ref> : <math>\sigma = \frac {\widehat \alpha} {\sqrt n}. </math> Malik (1970)<ref>{{cite journal |author=H. J. Malik |year=1970 |title=Estimation of the Parameters of the Pareto Distribution |journal=Metrika |volume=15|pages=126β132 |doi=10.1007/BF02613565 |s2cid=124007966 }}</ref> gives the exact joint distribution of <math>(\hat{x}_\mathrm{m},\hat\alpha)</math>. In particular, <math>\hat{x}_\mathrm{m}</math> and <math>\hat\alpha</math> are [[Independence (probability theory)|independent]] and <math>\hat{x}_\mathrm{m}</math> is Pareto with scale parameter ''x''<sub>m</sub> and shape parameter ''nΞ±'', whereas <math>\hat\alpha</math> has an [[inverse-gamma distribution]] with shape and scale parameters ''n'' β 1 and ''nΞ±'', respectively.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pareto distribution
(section)
Add topic