Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lp space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations and extensions== ===Weak {{math|''L<sup>p</sup>''}}=== Let <math>(S, \Sigma, \mu)</math> be a measure space, and <math>f</math> a [[measurable function]] with real or complex values on <math>S.</math> The [[cumulative distribution function|distribution function]] of <math>f</math> is defined for <math>t \geq 0</math> by <math display="block">\lambda_f(t) = \mu\{x \in S : |f(x)| > t\}.</math> If <math>f</math> is in <math>L^p(S, \mu)</math> for some <math>p</math> with <math>1 \leq p < \infty,</math> then by [[Markov's inequality]], <math display="block">\lambda_f(t) \leq \frac{\|f\|_p^p}{t^p}</math> A function <math>f</math> is said to be in the space '''weak <math>L^p(S, \mu)</math>''', or <math>L^{p,w}(S, \mu),</math> if there is a constant <math>C > 0</math> such that, for all <math>t > 0,</math> <math display="block">\lambda_f(t) \leq \frac{C^p}{t^p}</math> The best constant <math>C</math> for this inequality is the <math>L^{p,w}</math>-norm of <math>f,</math> and is denoted by <math display="block">\|f\|_{p,w} = \sup_{t > 0} ~ t \lambda_f^{1/p}(t).</math> The weak <math>L^p</math> coincide with the [[Lorentz space]]s <math>L^{p,\infty},</math> so this notation is also used to denote them. The <math>L^{p,w}</math>-norm is not a true norm, since the [[triangle inequality]] fails to hold. Nevertheless, for <math>f</math> in <math>L^p(S, \mu),</math> <math display="block">\|f\|_{p,w} \leq \|f\|_p</math> and in particular <math>L^p(S, \mu) \subset L^{p,w}(S, \mu).</math> In fact, one has <math display="block">\|f\|^p_{L^p} = \int |f(x)|^p d\mu(x) \geq \int_{\{|f(x)| > t \}} t^p + \int_{\{|f(x)| \leq t \}} |f|^p \geq t^p \mu(\{|f| > t \}),</math> and raising to power <math>1/p</math> and taking the supremum in <math>t</math> one has <math display="block">\|f\|_{L^p} \geq \sup_{t > 0} t \; \mu(\{|f| > t \})^{1/p} = \|f\|_{L^{p,w}}.</math> Under the convention that two functions are equal if they are equal <math>\mu</math> almost everywhere, then the spaces <math>L^{p,w}</math> are complete {{harv|Grafakos|2004}}. For any <math>0 < r < p</math> the expression <math display="block">\|| f |\|_{L^{p,\infty}} = \sup_{0<\mu(E)<\infty} \mu(E)^{-1/r + 1/p} \left(\int_E |f|^r\, d\mu\right)^{1/r}</math> is comparable to the <math>L^{p,w}</math>-norm. Further in the case <math>p > 1,</math> this expression defines a norm if <math>r = 1.</math> Hence for <math>p > 1</math> the weak <math>L^p</math> spaces are [[Banach space]]s {{harv|Grafakos|2004}}. A major result that uses the <math>L^{p,w}</math>-spaces is the [[Marcinkiewicz interpolation|Marcinkiewicz interpolation theorem]], which has broad applications to [[harmonic analysis]] and the study of [[singular integrals]]. ===Weighted {{math|''L<sup>p</sup>''}} spaces=== As before, consider a [[measure space]] <math>(S, \Sigma, \mu).</math> Let <math>w : S \to [a, \infty), a > 0</math> be a measurable function. The <math>w</math>-'''weighted <math>L^p</math> space''' is defined as <math>L^p(S, w \, \mathrm{d} \mu),</math> where <math>w \, \mathrm{d} \mu</math> means the measure <math>\nu</math> defined by <math display="block">\nu(A) \equiv \int_A w(x) \, \mathrm{d} \mu (x), \qquad A \in \Sigma,</math> or, in terms of the [[Radon–Nikodym theorem|Radon–Nikodym derivative]], <math>w = \tfrac{\mathrm{d} \nu}{\mathrm{d} \mu}</math> the [[Norm (mathematics)|norm]] for <math>L^p(S, w \, \mathrm{d} \mu)</math> is explicitly <math display="block">\|u\|_{L^p(S, w \, \mathrm{d} \mu)} \equiv \left(\int_S w(x) |u(x)|^p \, \mathrm{d} \mu(x)\right)^{1/p}</math> As <math>L^p</math>-spaces, the weighted spaces have nothing special, since <math>L^p(S, w \, \mathrm{d} \mu)</math> is equal to <math>L^p(S, \mathrm{d} \nu).</math> But they are the natural framework for several results in harmonic analysis {{harv|Grafakos|2004}}<!--Please check this reference. Appears in Grafakos "Modern Fourier analysis", Chapter 9.-->; they appear for example in the [[Muckenhoupt weights|Muckenhoupt theorem]]: for <math>1 < p < \infty,</math> the classical [[Hilbert transform]] is defined on <math>L^p(\mathbf{T}, \lambda)</math> where <math>\mathbf{T}</math> denotes the [[unit circle]] and <math>\lambda</math> the Lebesgue measure; the (nonlinear) [[Hardy–Littlewood maximal operator]] is bounded on <math>L^p(\Reals^n, \lambda).</math> Muckenhoupt's theorem describes weights <math>w</math> such that the Hilbert transform remains bounded on <math>L^p(\mathbf{T}, w \, \mathrm{d} \lambda)</math> and the maximal operator on <math>L^p(\Reals^n, w \, \mathrm{d} \lambda).</math> ==={{math|''L<sup>p</sup>''}} spaces on manifolds=== One may also define spaces <math>L^p(M)</math> on a manifold, called the '''intrinsic <math>L^p</math> spaces''' of the manifold, using [[Density on a manifold|densities]]. ===Vector-valued {{math|''L<sup>p</sup>''}} spaces=== Given a measure space <math>(\Omega, \Sigma, \mu)</math> and a [[Locally convex topological vector space|locally convex space]] <math>E</math> (here assumed to be [[Complete topological vector space|complete]]), it is possible to define spaces of <math>p</math>-integrable <math>E</math>-valued functions on <math>\Omega</math> in a number of ways. One way is to define the spaces of [[Bochner integral|Bochner integrable]] and [[Pettis integral|Pettis integrable]] functions, and then endow them with [[Locally convex topological vector space|locally convex]] [[Vector topology|TVS-topologies]] that are (each in their own way) a natural generalization of the usual <math>L^p</math> topology. Another way involves [[topological tensor product]]s of <math>L^p(\Omega, \Sigma, \mu)</math> with <math>E.</math> Element of the vector space <math>L^p(\Omega, \Sigma, \mu) \otimes E</math> are finite sums of simple tensors <math>f_1 \otimes e_1 + \cdots + f_n \otimes e_n,</math> where each simple tensor <math>f \times e</math> may be identified with the function <math>\Omega \to E</math> that sends <math>x \mapsto e f(x).</math> This [[tensor product]] <math>L^p(\Omega, \Sigma, \mu) \otimes E</math> is then endowed with a locally convex topology that turns it into a [[topological tensor product]], the most common of which are the [[projective tensor product]], denoted by <math>L^p(\Omega, \Sigma, \mu) \otimes_\pi E,</math> and the [[injective tensor product]], denoted by <math>L^p(\Omega, \Sigma, \mu) \otimes_\varepsilon E.</math> In general, neither of these space are complete so their [[Complete topological vector space|completions]] are constructed, which are respectively denoted by <math>L^p(\Omega, \Sigma, \mu) \widehat{\otimes}_\pi E</math> and <math>L^p(\Omega, \Sigma, \mu) \widehat{\otimes}_\varepsilon E</math> (this is analogous to how the space of scalar-valued [[simple function]]s on <math>\Omega,</math> when seminormed by any <math>\|\cdot\|_p,</math> is not complete so a completion is constructed which, after being quotiented by <math>\ker \|\cdot\|_p,</math> is isometrically isomorphic to the Banach space <math>L^p(\Omega, \mu)</math>). [[Alexander Grothendieck]] showed that when <math>E</math> is a [[nuclear space]] (a concept he introduced), then these two constructions are, respectively, canonically TVS-isomorphic with the spaces of Bochner and Pettis integral functions mentioned earlier; in short, they are indistinguishable. ==={{math|''L''<sup>0</sup>}} space of measurable functions=== The vector space of ([[equivalence class]]es of) measurable functions on <math>(S, \Sigma, \mu)</math> is denoted <math>L^0(S, \Sigma, \mu)</math> {{harv|Kalton|Peck|Roberts|1984}}. By definition, it contains all the <math>L^p,</math> and is equipped with the topology of ''[[convergence in measure]]''. When <math>\mu</math> is a probability measure (i.e., <math>\mu(S) = 1</math>), this mode of convergence is named ''[[convergence in probability]]''. The space <math>L^0</math> is always a [[topological abelian group]] but is only a [[topological vector space]] if <math>\mu(S)<\infty.</math> This is because scalar multiplication is continuous if and only if <math>\mu(S)<\infty.</math> If <math>(S,\Sigma,\mu)</math> is <math>\sigma</math>-finite then the [[weaker topology]] of [[local convergence in measure]] is an [[F-space]], i.e. a [[Complete topological vector space|completely]] [[metrizable topological vector space]]. Moreover, this topology is isometric to global convergence in measure <math>(S,\Sigma,\nu)</math> for a suitable choice of [[probability measure]] <math>\nu.</math> The description is easier when <math>\mu</math> is finite. If <math>\mu</math> is a [[finite measure]] on <math>(S, \Sigma),</math> the <math>0</math> function admits for the convergence in measure the following [[fundamental system of neighborhoods]] <math display="block">V_\varepsilon = \Bigl\{f : \mu \bigl(\{x : |f(x)| > \varepsilon\} \bigr) < \varepsilon \Bigr\}, \qquad \varepsilon > 0.</math> The topology can be defined by any metric <math>d</math> of the form <math display="block">d(f, g) = \int_S \varphi \bigl(|f(x) - g(x)|\bigr)\, \mathrm{d}\mu(x)</math> where <math>\varphi</math> is bounded continuous concave and non-decreasing on <math>[0, \infty),</math> with <math>\varphi(0) = 0</math> and <math>\varphi(t) > 0</math> when <math>t > 0</math> (for example, <math>\varphi(t) = \min(t, 1).</math> Such a metric is called [[Paul Lévy (mathematician)|Lévy]]-metric for <math>L^0.</math> Under this metric the space <math>L^0</math> is complete. However, as mentioned above, scalar multiplication is continuous with respect to this metric only if <math>\mu(S)<\infty</math>. To see this, consider the Lebesgue measurable function <math>f:\mathbb R\rightarrow \mathbb R</math> defined by <math>f(x)=x</math>. Then clearly <math>\lim_{c\rightarrow 0}d(cf,0)=\infty</math>. The space <math>L^0</math> is in general not locally bounded, and not locally convex. For the infinite Lebesgue measure <math>\lambda</math> on <math>\Reals^n,</math> the definition of the fundamental system of neighborhoods could be modified as follows <math display="block">W_\varepsilon = \left\{f : \lambda \left(\left\{x : |f(x)| > \varepsilon \text{ and } |x| < \tfrac{1}{\varepsilon}\right\}\right) < \varepsilon\right\}</math> The resulting space <math>L^0(\Reals^n, \lambda)</math>, with the topology of local convergence in measure, is isomorphic to the space <math>L^0(\Reals^n, g \, \lambda),</math> for any positive <math>\lambda</math>–integrable density <math>g.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lp space
(section)
Add topic