Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kalman filter
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Information filter == {{More citations needed section|date=April 2016}} In cases where the dimension of the observation vector '''y''' is bigger than the dimension of the state space vector '''x''', the information filter can avoid the inversion of a bigger matrix in the Kalman gain calculation at the price of inverting a smaller matrix in the prediction step, thus saving computing time. Additionally, the information filter allows for system information initialization according to <math>{I_{1|0} = P^{-1}_{1|0} = 0}</math>, which would not be possible for the regular Kalman filter.<ref>{{Cite book |last=Gustafsson |first=Fredrik |title=Statistical sensor fusion |date=2018 |publisher=Studentlitteratur |isbn=978-91-44-12724-8 |edition=Third |location=Lund |pages=160β162}}</ref> In the information filter, or inverse covariance filter, the estimated covariance and estimated state are replaced by the [[Fisher information matrix|information matrix]] and [[Fisher information|information]] vector respectively. These are defined as: :<math>\begin{align} \mathbf{Y}_{k \mid k} &= \mathbf{P}_{k \mid k}^{-1} \\ \hat{\mathbf{y}}_{k \mid k} &= \mathbf{P}_{k \mid k}^{-1}\hat{\mathbf{x}}_{k \mid k} \end{align}</math> Similarly the predicted covariance and state have equivalent information forms, defined as: :<math>\begin{align} \mathbf{Y}_{k \mid k-1} &= \mathbf{P}_{k \mid k-1}^{-1} \\ \hat{\mathbf{y}}_{k \mid k-1} &= \mathbf{P}_{k \mid k-1}^{-1}\hat{\mathbf{x}}_{k \mid k-1} \end{align}</math> and the measurement covariance and measurement vector, which are defined as: :<math>\begin{align} \mathbf{I}_k &= \mathbf{H}_k^\textsf{T} \mathbf{R}_k^{-1} \mathbf{H}_k \\ \mathbf{i}_k &= \mathbf{H}_k^\textsf{T} \mathbf{R}_k^{-1} \mathbf{z}_k \end{align}</math> The information update now becomes a trivial sum.<ref name=terejanu>{{cite web |title=Discrete Kalman Filter Tutorial |author=Gabriel T. Terejanu |date=2012-08-04 |access-date=2016-04-13 |url=https://cse.sc.edu/~terejanu/files/tutorialKF.pdf |archive-date=2020-08-17 |archive-url=https://web.archive.org/web/20200817230005/https://cse.sc.edu/~terejanu/files/tutorialKF.pdf |url-status=dead }}</ref> :<math>\begin{align} \mathbf{Y}_{k \mid k} &= \mathbf{Y}_{k \mid k-1} + \mathbf{I}_k \\ \hat{\mathbf{y}}_{k \mid k} &= \hat{\mathbf{y}}_{k \mid k-1} + \mathbf{i}_k \end{align}</math> The main advantage of the information filter is that ''N'' measurements can be filtered at each time step simply by summing their information matrices and vectors. :<math>\begin{align} \mathbf{Y}_{k \mid k} &= \mathbf{Y}_{k \mid k-1} + \sum_{j=1}^N \mathbf{I}_{k,j} \\ \hat{\mathbf{y}}_{k \mid k} &= \hat{\mathbf{y}}_{k \mid k-1} + \sum_{j=1}^N \mathbf{i}_{k,j} \end{align}</math> To predict the information filter the information matrix and vector can be converted back to their state space equivalents, or alternatively the information space prediction can be used.<ref name=terejanu /> :<math>\begin{align} \mathbf{M}_k &= \left[\mathbf{F}_k^{-1}\right]^\textsf{T} \mathbf{Y}_{k-1 \mid k-1} \mathbf{F}_k^{-1} \\ \mathbf{C}_k &= \mathbf{M}_k \left[\mathbf{M}_k + \mathbf{Q}_k^{-1}\right]^{-1} \\ \mathbf{L}_k &= \mathbf{I} - \mathbf{C}_k \\ \mathbf{Y}_{k \mid k-1} &= \mathbf{L}_k \mathbf{M}_k + \mathbf{C}_k \mathbf{Q}_k^{-1} \mathbf{C}_k^\textsf{T} \\ \hat{\mathbf{y}}_{k \mid k-1} &= \mathbf{L}_k \left[\mathbf{F}_k^{-1}\right]^\textsf{T} \hat{\mathbf{y}}_{k-1 \mid k-1} \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kalman filter
(section)
Add topic