Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gamma function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Integration over log-gamma === The integral <math display="block"> \int_0^z \operatorname{log\Gamma} (x) \, dx</math> can be expressed in terms of the [[Barnes G-function|Barnes {{math|''G''}}-function]]<ref name="Alexejewsky">{{cite journal|first=W. P. |last=Alexejewsky |title=Über eine Classe von Funktionen, die der Gammafunktion analog sind |trans-title=On a class of functions analogous to the gamma function |journal=Leipzig Weidmannsche Buchhandlung |volume=46 |date=1894 |pages=268–275}}</ref><ref name="Barnes">{{cite journal|first=E. W. |last=Barnes |title=The theory of the ''G''-function |journal=Quart. J. Math. |volume=31 |date=1899 |pages=264–314}}</ref> (see [[Barnes G-function|Barnes {{math|''G''}}-function]] for a proof): <math display="block">\int_0^z \operatorname{log\Gamma}(x) \, dx = \frac{z}{2} \log (2 \pi) + \frac{z(1-z)}{2} + z \operatorname{log\Gamma}(z) - \log G(z+1)</math> where {{math|Re(''z'') > −1}}. It can also be written in terms of the [[Hurwitz zeta function]]:<ref name="Adamchik">{{cite journal|first=Victor S. |last=Adamchik |title=Polygamma functions of negative order |journal=J. Comput. Appl. Math. |volume=100 |issue=2 |date=1998 |pages=191–199 |doi=10.1016/S0377-0427(98)00192-7|doi-access=free }}</ref><ref name="Gosper">{{cite journal|first=R. W. |last=Gosper |title=<math>\textstyle \int_{n/4}^{m/6} \log F(z) \,dz</math> in special functions, ''q''-series and related topics |journal=J. Am. Math. Soc. |volume=14 |date=1997}}</ref> <math display="block">\int_0^z \operatorname{log\Gamma}(x) \, dx = \frac{z}{2} \log(2 \pi) + \frac{z(1-z)}{2} - \zeta'(-1) + \zeta'(-1,z) .</math> When <math>z=1</math> it follows that <math display="block"> \int_0^1 \operatorname{log\Gamma}(x) \, dx = \frac 1 2 \log(2\pi), </math> and this is a consequence of [[Raabe's formula]] as well. O. Espinosa and V. Moll derived a similar formula for the integral of the square of <math>\operatorname{log\Gamma}</math>:<ref name="EspinosaMoll">{{cite journal|first1=Olivier |last1=Espinosa|first2=Victor H. |last2=Moll|title= On Some Integrals Involving the Hurwitz Zeta Function: Part 1|journal=The Ramanujan Journal |volume=6 |date=2002 |issue=2|pages=159–188 |doi=10.1023/A:1015706300169|s2cid=128246166}}</ref> <math display="block">\int_{0}^{1} \log ^{2} \Gamma(x) d x=\frac{\gamma^{2}}{12}+\frac{\pi^{2}}{48}+\frac{1}{3} \gamma L_{1}+\frac{4}{3} L_{1}^{2}-\left(\gamma+2 L_{1}\right) \frac{\zeta^{\prime}(2)}{\pi^{2}}+\frac{\zeta^{\prime \prime}(2)}{2 \pi^{2}},</math> where <math>L_1</math> is <math>\frac12\log(2\pi)</math>. D. H. Bailey and his co-authors<ref name="Bailey">{{cite journal|first1=David H. |last1=Bailey|first2=David |last2=Borwein|first3=Jonathan M.|last3=Borwein|title= On Eulerian log-gamma integrals and Tornheim-Witten zeta functions|journal=The Ramanujan Journal |volume=36 |date=2015 |issue=1–2|pages=43–68 |doi=10.1007/s11139-012-9427-1|s2cid=7335291}}</ref> gave an evaluation for <math display="block">L_n:=\int_0^1 \log^n \Gamma(x) \, dx</math> when <math>n=1,2</math> in terms of the Tornheim–Witten zeta function and its derivatives. In addition, it is also known that<ref name="ACEKNM">{{cite journal|first1=T. |last1=Amdeberhan|first2=Mark W.|last2=Coffey|first3=Olivier|last3=Espinosa|first4=Christoph|last4=Koutschan|first5=Dante V.|last5=Manna|first6=Victor H.|last6=Moll|title= Integrals of powers of loggamma|journal=Proc. Amer. Math. Soc.|volume=139|issue=2 |date=2011 |pages=535–545 |doi=10.1090/S0002-9939-2010-10589-0|doi-access=free}}</ref> <math display="block"> \lim_{n\to\infty} \frac{L_n}{n!}=1. </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gamma function
(section)
Add topic