Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Discrete Fourier transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalized DFT (shifted and non-linear phase)== It is possible to shift the transform sampling in time and/or frequency domain by some real shifts ''a'' and ''b'', respectively. This is sometimes known as a '''generalized DFT''' (or '''GDFT'''), also called the '''shifted DFT''' or '''offset DFT''', and has analogous properties to the ordinary DFT: :<math>X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{i 2 \pi}{N} (k+b) (n+a)} \quad \quad k = 0, \dots, N-1.</math> Most often, shifts of <math>1/2</math> (half a sample) are used. While the ordinary DFT corresponds to a periodic signal in both time and frequency domains, <math>a=1/2</math> produces a signal that is anti-periodic in frequency domain (<math>X_{k+N} = - X_k</math>) and vice versa for <math>b=1/2</math>. Thus, the specific case of <math>a = b = 1/2</math> is known as an ''odd-time odd-frequency'' discrete Fourier transform (or O<sup>2</sup> DFT). Such shifted transforms are most often used for symmetric data, to represent different boundary symmetries, and for real-symmetric data they correspond to different forms of the discrete [[discrete cosine transform|cosine]] and [[discrete sine transform|sine]] transforms. Another interesting choice is <math>a=b=-(N-1)/2</math>, which is called the '''centered DFT''' (or '''CDFT'''). The centered DFT has the useful property that, when ''N'' is a multiple of four, all four of its eigenvalues (see above) have equal multiplicities (Rubio and Santhanam, 2005)<ref name=Santhanam/> The term GDFT is also used for the non-linear phase extensions of DFT. Hence, GDFT method provides a generalization for constant amplitude orthogonal block transforms including linear and non-linear phase types. GDFT is a framework to improve time and frequency domain properties of the traditional DFT, e.g. auto/cross-correlations, by the addition of the properly designed phase shaping function (non-linear, in general) to the original linear phase functions (Akansu and Agirman-Tosun, 2010).<ref name=Akansu/> The discrete Fourier transform can be viewed as a special case of the [[z-transform]], evaluated on the unit circle in the complex plane; more general z-transforms correspond to ''complex'' shifts ''a'' and ''b'' above. [[File:DirectAndFourierSpaceLocations.png|class=skin-invert-image|right|thumb|500px|Discrete transforms embedded in time & space.]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Discrete Fourier transform
(section)
Add topic