Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Banach space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Examples of dual spaces==== The dual of <math>c_0</math> is isometrically isomorphic to <math>\ell^1</math>: for every bounded linear functional <math>f</math> on <math>c_0,</math> there is a unique element <math>y = \{y_n\} \in \ell^1</math> such that <math display=block>f(x) = \sum_{n \in \N} x_n y_n, \qquad x = \{x_n\} \in c_0, \ \ \text{and} \ \ \|f\|_{(c_0)'} = \|y\|_{\ell_1}. </math> The dual of <math>\ell^1</math> is isometrically isomorphic to <math>\ell^{\infty}</math>. The dual of [[Lp space#Properties of Lp spaces|Lebesgue space]] <math>L^p([0, 1])</math> is isometrically isomorphic to <math>L^q([0, 1])</math> when <math>1 \leq p < \infty</math> and <math>\frac{1}{p} + \frac{1}{q} = 1.</math> For every vector <math>y</math> in a Hilbert space <math>H,</math> the mapping <math display=block>x \in H \to f_y(x) = \langle x, y \rangle</math> defines a continuous linear functional <math>f_y</math> on <math>H.</math>The [[Riesz representation theorem]] states that every continuous linear functional on <math>H</math> is of the form <math>f_y</math> for a uniquely defined vector <math>y</math> in <math>H.</math> The mapping <math>y \in H \to f_y</math> is an [[Antilinear map|antilinear]] isometric bijection from <math>H</math> onto its dual <math>H'.</math> When the scalars are real, this map is an isometric isomorphism. When <math>K</math> is a compact Hausdorff topological space, the dual <math>M(K)</math> of <math>C(K)</math> is the space of [[Radon measure]]s in the sense of Bourbaki.<ref>see N. Bourbaki, (2004), "Integration I", Springer Verlag, {{ISBN|3-540-41129-1}}.</ref> The subset <math>P(K)</math> of <math>M(K)</math> consisting of non-negative measures of mass 1 ([[probability measure]]s) is a convex w*-closed subset of the unit ball of <math>M(K).</math> The [[extreme point]]s of <math>P(K)</math> are the [[Dirac measure]]s on <math>K.</math> The set of Dirac measures on <math>K,</math> equipped with the w*-topology, is [[Homeomorphism|homeomorphic]] to <math>K.</math> {{math theorem|name=[[Banach–Stone theorem|Banach–Stone Theorem]]|math_statement=If <math>K</math> and <math>L</math> are compact Hausdorff spaces and if <math>C(K)</math> and <math>C(L)</math> are isometrically isomorphic, then the topological spaces <math>K</math> and <math>L</math> are [[homeomorphic]].<ref name= Eilenberg /><ref>see also {{harvtxt|Banach|1932}}, p. 170 for metrizable <math>K</math> and <math>L.</math></ref>}} The result has been extended by Amir<ref>{{cite journal |first=Dan |last=Amir |title=On isomorphisms of continuous function spaces |journal=[[Israel Journal of Mathematics]] |volume=3 |year=1965 |issue=4 |pages=205–210 |doi=10.1007/bf03008398 |doi-access=free |s2cid=122294213 }}</ref> and Cambern<ref>{{cite journal |first=M. |last=Cambern |title=A generalized Banach–Stone theorem |journal=Proc. Amer. Math. Soc. |volume=17 |year=1966 |issue=2 |pages=396–400 |doi=10.1090/s0002-9939-1966-0196471-9|doi-access=free}} And {{cite journal |first=M. |last=Cambern |title=On isomorphisms with small bound |journal=Proc. Amer. Math. Soc. |volume=18 |year=1967 |issue=6 |pages=1062–1066 |doi=10.1090/s0002-9939-1967-0217580-2|doi-access=free}}</ref> to the case when the multiplicative [[Banach–Mazur compactum|Banach–Mazur distance]] between <math>C(K)</math> and <math>C(L)</math> is <math>< 2.</math> The theorem is no longer true when the distance is <math> = 2.</math><ref>{{cite journal |first=H. B. |last=Cohen |title=A bound-two isomorphism between <math>C(X)</math> Banach spaces |journal=Proc. Amer. Math. Soc. |volume=50 |year=1975 |pages=215–217 |doi=10.1090/s0002-9939-1975-0380379-5|doi-access=free }}</ref> In the commutative [[Banach algebra]] <math>C(K),</math> the [[Banach algebra#Ideals and characters|maximal ideals]] are precisely kernels of Dirac measures on <math>K,</math> <math display=block>I_x = \ker \delta_x = \{f \in C(K) \mid f(x) = 0\}, \quad x \in K.</math> More generally, by the [[Gelfand–Mazur theorem]], the maximal ideals of a unital commutative Banach algebra can be identified with its [[Banach algebra#Ideals and characters|characters]]—not merely as sets but as topological spaces: the former with the [[hull-kernel topology]] and the latter with the w*-topology. In this identification, the maximal ideal space can be viewed as a w*-compact subset of the unit ball in the dual <math>A'.</math> {{math theorem|math_statement= If <math>K</math> is a compact Hausdorff space, then the maximal ideal space <math>\Xi</math> of the Banach algebra <math>C(K)</math> is [[homeomorphic]] to <math>K.</math><ref name=Eilenberg>{{cite journal |last=Eilenberg |first=Samuel |title=Banach Space Methods in Topology |journal=[[Annals of Mathematics]] |date=1942 |volume=43 |issue=3 |pages=568–579 |doi=10.2307/1968812|jstor=1968812 }}</ref>}} Not every unital commutative Banach algebra is of the form <math>C(K)</math> for some compact Hausdorff space <math>K.</math> However, this statement holds if one places <math>C(K)</math> in the smaller category of commutative [[C*-algebra]]s. [[Israel Gelfand|Gelfand's]] [[Gelfand representation|representation theorem]] for commutative C*-algebras states that every commutative unital ''C''*-algebra <math>A</math> is isometrically isomorphic to a <math>C(K)</math> space.<ref>See for example {{cite book |first=W. |last=Arveson |year=1976 |title=An Invitation to C*-Algebra |publisher=Springer-Verlag |isbn=0-387-90176-0 }}</ref> The Hausdorff compact space <math>K</math> here is again the maximal ideal space, also called the [[Spectrum of a C*-algebra#Examples|spectrum]] of <math>A</math> in the C*-algebra context.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Banach space
(section)
Add topic