Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Wiener process
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Information rate === The [[information rate]] of the Wiener process with respect to the squared error distance, i.e. its quadratic [[rate-distortion function]], is given by <ref>T. Berger, "Information rates of Wiener processes," in IEEE Transactions on Information Theory, vol. 16, no. 2, pp. 134-139, March 1970. doi: 10.1109/TIT.1970.1054423</ref> <math display="block">R(D) = \frac{2}{\pi^2 D \ln 2} \approx 0.29D^{-1}.</math> Therefore, it is impossible to encode <math>\{w_t \}_{t \in [0,T]}</math> using a [[binary code]] of less than <math>T R(D)</math> [[bit]]s and recover it with expected mean squared error less than <math>D</math>. On the other hand, for any <math> \varepsilon>0</math>, there exists <math>T</math> large enough and a [[binary code]] of no more than <math>2^{TR(D)}</math> distinct elements such that the expected [[mean squared error]] in recovering <math>\{w_t \}_{t \in [0,T]}</math> from this code is at most <math>D - \varepsilon</math>. In many cases, it is impossible to [[binary code|encode]] the Wiener process without [[Sampling (signal processing)|sampling]] it first. When the Wiener process is sampled at intervals <math>T_s</math> before applying a binary code to represent these samples, the optimal trade-off between [[code rate]] <math>R(T_s,D)</math> and expected [[mean square error]] <math>D</math> (in estimating the continuous-time Wiener process) follows the parametric representation <ref>Kipnis, A., Goldsmith, A.J. and Eldar, Y.C., 2019. The distortion-rate function of sampled Wiener processes. IEEE Transactions on Information Theory, 65(1), pp.482-499.</ref> <math display="block"> R(T_s,D_\theta) = \frac{T_s}{2} \int_0^1 \log_2^+\left[\frac{S(\varphi)- \frac{1}{6}}{\theta}\right] d\varphi, </math> <math display="block"> D_\theta = \frac{T_s}{6} + T_s\int_0^1 \min\left\{S(\varphi)-\frac{1}{6},\theta \right\} d\varphi, </math> where <math>S(\varphi) = (2 \sin(\pi \varphi /2))^{-2}</math> and <math>\log^+[x] = \max\{0,\log(x)\}</math>. In particular, <math>T_s/6</math> is the mean squared error associated only with the sampling operation (without encoding).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Wiener process
(section)
Add topic