Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Variance
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Sum of correlated variables with fixed sample size===== {{main article|Bienaymé's identity}} In general, the variance of the sum of {{math|n}} variables is the sum of their [[covariance]]s: <math display="block">\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}\left(X_i, X_j\right) = \sum_{i=1}^n \operatorname{Var}\left(X_i\right) + 2 \sum_{1 \leq i < j\leq n} \operatorname{Cov}\left(X_i, X_j\right).</math> (Note: The second equality comes from the fact that {{math|1=Cov(''X''<sub>''i''</sub>,''X''<sub>''i''</sub>) = Var(''X''<sub>''i''</sub>)}}.) Here, <math>\operatorname{Cov}(\cdot,\cdot)</math> is the [[covariance]], which is zero for independent random variables (if it exists). The formula states that the variance of a sum is equal to the sum of all elements in the covariance matrix of the components. The next expression states equivalently that the variance of the sum is the sum of the diagonal of covariance matrix plus two times the sum of its upper triangular elements (or its lower triangular elements); this emphasizes that the covariance matrix is symmetric. This formula is used in the theory of [[Cronbach's alpha]] in [[classical test theory]]. So, if the variables have equal variance ''σ''<sup>2</sup> and the average [[correlation]] of distinct variables is ''ρ'', then the variance of their mean is <math display="block">\operatorname{Var}\left(\overline{X}\right) = \frac{\sigma^2}{n} + \frac{n - 1}{n}\rho\sigma^2.</math> This implies that the variance of the mean increases with the average of the correlations. In other words, additional correlated observations are not as effective as additional independent observations at reducing the [[standard error|uncertainty of the mean]]. Moreover, if the variables have unit variance, for example if they are standardized, then this simplifies to <math display="block">\operatorname{Var}\left(\overline{X}\right) = \frac{1}{n} + \frac{n - 1}{n}\rho.</math> This formula is used in the [[Spearman–Brown prediction formula]] of classical test theory. This converges to ''ρ'' if ''n'' goes to infinity, provided that the average correlation remains constant or converges too. So for the variance of the mean of standardized variables with equal correlations or converging average correlation we have <math display="block">\lim_{n \to \infty} \operatorname{Var}\left(\overline{X}\right) = \rho.</math> Therefore, the variance of the mean of a large number of standardized variables is approximately equal to their average correlation. This makes clear that the sample mean of correlated variables does not generally converge to the population mean, even though the [[law of large numbers]] states that the sample mean will converge for independent variables.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Variance
(section)
Add topic