Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Trigonometric functions
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Sum and difference formulas=== The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to [[Ptolemy]] (see [[List_of_trigonometric_identities#Angle_sum_and_difference_identities|Angle sum and difference identities]]). One can also produce them algebraically using [[Euler's formula]]. ; Sum :<math>\begin{align} \sin\left(x+y\right)&=\sin x \cos y + \cos x \sin y,\\[5mu] \cos\left(x+y\right)&=\cos x \cos y - \sin x \sin y,\\[5mu] \tan(x + y) &= \frac{\tan x + \tan y}{1 - \tan x\tan y}. \end{align}</math> ; Difference :<math>\begin{align} \sin\left(x-y\right)&=\sin x \cos y - \cos x \sin y,\\[5mu] \cos\left(x-y\right)&=\cos x \cos y + \sin x \sin y,\\[5mu] \tan(x - y) &= \frac{\tan x - \tan y}{1 + \tan x\tan y}. \end{align}</math> When the two angles are equal, the sum formulas reduce to simpler equations known as the [[double-angle formulae]]. :<math>\begin{align} \sin 2x &= 2 \sin x \cos x = \frac{2\tan x}{1+\tan^2 x}, \\[5mu] \cos 2x &= \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x = \frac{1-\tan^2 x}{1+\tan^2 x},\\[5mu] \tan 2x &= \frac{2\tan x}{1-\tan^2 x}. \end{align}</math> These identities can be used to derive the [[product-to-sum identities]]. By setting <math>t=\tan \tfrac12 \theta,</math> all trigonometric functions of <math>\theta</math> can be expressed as [[rational fraction]]s of <math>t</math>: :<math>\begin{align} \sin \theta &= \frac{2t}{1+t^2}, \\[5mu] \cos \theta &= \frac{1-t^2}{1+t^2},\\[5mu] \tan \theta &= \frac{2t}{1-t^2}. \end{align}</math> Together with :<math>d\theta = \frac{2}{1+t^2} \, dt,</math> this is the [[tangent half-angle substitution]], which reduces the computation of [[integral]]s and [[antiderivative]]s of trigonometric functions to that of rational fractions.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Trigonometric functions
(section)
Add topic