Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quantum field theory
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Other spacetimes==== The {{math|''ϕ''<sup>4</sup>}} theory, QED, QCD, as well as the whole Standard Model all assume a (3+1)-dimensional [[Minkowski space]] (3 spatial and 1 time dimensions) as the background on which the quantum fields are defined. However, QFT ''a priori'' imposes no restriction on the number of dimensions nor the geometry of spacetime. In [[condensed matter physics]], QFT is used to describe [[two-dimensional electron gas|(2+1)-dimensional electron gases]].<ref>{{cite book |last1=Morandi |first1=G. |last2=Sodano |first2=P. |last3=Tagliacozzo |first3=A. |last4=Tognetti |first4=V. |date=2000 |title=Field Theories for Low-Dimensional Condensed Matter Systems |url=https://www.springer.com/us/book/9783540671770 |publisher=Springer |isbn=978-3-662-04273-1 }}</ref> In [[high-energy physics]], [[string theory]] is a type of (1+1)-dimensional QFT,{{r|zee|page1=452}}<ref name="polchinski1" /> while [[Kaluza–Klein theory]] uses gravity in [[extra dimensions]] to produce gauge theories in lower dimensions.{{r|zee|page1=428–429}} In Minkowski space, the flat [[metric tensor (general relativity)|metric]] {{math|''η<sub>μν</sub>''}} is used to [[raising and lowering indices|raise and lower]] spacetime indices in the Lagrangian, ''e.g.'' :<math>A_\mu A^\mu = \eta_{\mu\nu} A^\mu A^\nu,\quad \partial_\mu\phi \partial^\mu\phi = \eta^{\mu\nu}\partial_\mu\phi \partial_\nu\phi,</math> where {{math|''η<sup>μν</sup>''}} is the inverse of {{math|''η<sub>μν</sub>''}} satisfying {{math|''η<sup>μρ</sup>η<sub>ρν</sub>'' {{=}} ''δ<sup>μ</sup><sub>ν</sub>''}}. For [[quantum field theory in curved spacetime|QFTs in curved spacetime]] on the other hand, a general metric (such as the [[Schwarzschild metric]] describing a [[black hole]]) is used: :<math>A_\mu A^\mu = g_{\mu\nu} A^\mu A^\nu,\quad \partial_\mu\phi \partial^\mu\phi = g^{\mu\nu}\partial_\mu\phi \partial_\nu\phi,</math> where {{math|''g<sup>μν</sup>''}} is the inverse of {{math|''g<sub>μν</sub>''}}. For a real scalar field, the Lagrangian density in a general spacetime background is :<math>\mathcal{L} = \sqrt{|g|}\left(\frac 12 g^{\mu\nu} \nabla_\mu\phi \nabla_\nu\phi - \frac 12 m^2\phi^2\right),</math> where {{math|''g'' {{=}} det(''g<sub>μν</sub>'')}}, and {{math|∇<sub>''μ''</sub>}} denotes the [[covariant derivative]].<ref>{{cite book |last1=Parker |first1=Leonard E. |last2=Toms |first2=David J. |date=2009 |title=Quantum Field Theory in Curved Spacetime |url=https://archive.org/details/quantumfieldtheo00park |url-access=limited |publisher=Cambridge University Press |page=[https://archive.org/details/quantumfieldtheo00park/page/n58 43] |isbn=978-0-521-87787-9 }}</ref> The Lagrangian of a QFT, hence its calculational results and physical predictions, depends on the geometry of the spacetime background.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quantum field theory
(section)
Add topic