Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quadrilateral
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Maximum and minimum properties== Among all quadrilaterals with a given [[perimeter]], the one with the largest area is the [[Square (geometry)|square]]. This is called the ''[[isoperimetric inequality|isoperimetric theorem]] for quadrilaterals''. It is a direct consequence of the area inequality<ref name=Alsina/>{{rp|p.114}} :<math>K\le \tfrac{1}{16}L^2</math> where ''K'' is the area of a convex quadrilateral with perimeter ''L''. Equality holds [[if and only if]] the quadrilateral is a square. The dual theorem states that of all quadrilaterals with a given area, the square has the shortest perimeter. The quadrilateral with given side lengths that has the [[Maxima and minima|maximum]] area is the [[cyclic quadrilateral]].<ref name=Peter/> Of all convex quadrilaterals with given diagonals, the [[orthodiagonal quadrilateral]] has the largest area.<ref name=Alsina/>{{rp|p.119}} This is a direct consequence of the fact that the area of a convex quadrilateral satisfies :<math>K=\tfrac{1}{2}pq\sin{\theta}\le \tfrac{1}{2}pq,</math> where ''θ'' is the angle between the diagonals ''p'' and ''q''. Equality holds if and only if ''θ'' = 90°. If ''P'' is an interior point in a convex quadrilateral ''ABCD'', then :<math>AP+BP+CP+DP\ge AC+BD.</math> From this inequality it follows that the point inside a quadrilateral that [[Maxima and minima|minimizes]] the sum of distances to the [[Vertex (geometry)|vertices]] is the intersection of the diagonals. Hence that point is the [[Fermat point]] of a convex quadrilateral.<ref name=autogenerated1>{{cite book |last1=Alsina |first1=Claudi |last2=Nelsen |first2=Roger |title=Charming Proofs : A Journey Into Elegant Mathematics |publisher=Mathematical Association of America |year=2010 |pages=114, 119, 120, 261 |isbn=978-0-88385-348-1 }}</ref>{{rp|p.120}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quadrilateral
(section)
Add topic