Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Polar coordinate system
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Differential geometry == In the modern terminology of [[differential geometry]], polar coordinates provide [[coordinate charts]] for the [[differentiable manifold]] {{math|'''R'''<sup>2</sup> \ {(0,0)}<nowiki/>}}, the plane minus the origin. In these coordinates, the Euclidean [[metric tensor]] is given by<math display="block">ds^2 = dr^2 + r^2 d\theta^2.</math>This can be seen via the change of variables formula for the metric tensor, or by computing the [[differential form]]s ''dx'', ''dy'' via the [[exterior derivative]] of the 0-forms {{math|1=''x'' = ''r'' cos(''θ'')}}, {{math|1=''y'' = ''r'' sin(''θ'')}} and substituting them in the Euclidean metric tensor {{math|1=''ds''<sup>2</sup> = ''dx''<sup>2</sup> + ''dy''<sup>2</sup>}}. {{Collapse top|title=An elementary proof of the formula}} Let <math>p_1=(x_1,y_1)=(r_1,\theta_1)</math>, and <math>p_2=(x_2,y_2)=(r_2,\theta_2)</math> be two points in the plane given by their cartesian and polar coordinates. Then :<math>ds^2=dx^2+dy^2=(x_2-x_1)^2+(y_2-y_1)^2.</math> Since <math>dx^2=(r_2\cos\theta_2-r_1\cos\theta_1)^2</math>, and <math>dy^2=(r_2\sin\theta_2-r_1\sin\theta_1)^2</math>, we get that :<math>ds^2=r_2^2\cos^2\theta_2-2r_1r_2\cos\theta_1\cos\theta_2+r_1^2\cos^2\theta_1+r_2^2\sin^2\theta_2-2r_1r_2\sin\theta_1\sin\theta_2+r_1^2\sin^2\theta_1=</math> :<math>r_2^2(\cos^2\theta_2+\sin^2\theta_2)+r_1^2(\cos^2\theta_1+\sin^2\theta_1)-2r_1r_2(\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)=</math> :<math>r_1^2+r_2^2-2r_1r_2(1-1+\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)=</math> :<math>(r_2-r_1)^2+2r_1r_2(1-\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2).</math> Now we use the trigonometric identity <math>\cos(\theta_2-\theta_1)=\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2</math> to proceed: :<math>ds^2=dr^2+2r_1r_2(1-\cos d\theta).</math> If the radial and angular quantities are near to each other, and therefore near to a common quantity <math>r</math> and <math>\theta</math>, we have that <math>r_1r_2\approx r^2</math>. Moreover, the cosine of <math>d\theta</math> can be approximated with the Taylor series of the cosine up to linear terms: :<math>\cos d\theta\approx1-\frac{d\theta^2}{2},</math> so that <math>1-\cos d\theta\approx\frac{d\theta^2}{2}</math>, and <math>2r_1r_2(1-\cos d\theta)\approx2r^2\frac{d\theta^2}{2}=r^2d\theta^2</math>. Therefore, around an infinitesimally small domain of any point, :<math>ds^2=dr^2+r^2d\theta^2,</math> as stated. {{Collapse bottom}} An [[Orthonormality|orthonormal]] [[Moving frame|frame]] with respect to this metric is given by<math display="block">e_r = \frac{\partial}{\partial r}, \quad e_\theta = \frac1r \frac{\partial}{\partial \theta},</math>with [[Moving frame#Coframes|dual coframe]]<math display="block">e^r = dr, \quad e^\theta = r d\theta.</math>The [[connection form]] relative to this frame and the [[Levi-Civita connection]] is given by the skew-symmetric matrix of 1-forms<math display="block">{\omega^i}_j = \begin{pmatrix} 0 & -d\theta \\ d\theta & 0\end{pmatrix}</math>and hence the [[curvature form]] {{math|1=Ω = ''dω'' + ''ω''∧''ω''}} vanishes. Therefore, as expected, the punctured plane is a [[flat manifold]].<!-- Rather advanced -->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Polar coordinate system
(section)
Add topic