Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Moment of inertia
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Scalar moment of inertia in a plane === The scalar moment of inertia, <math>I_L</math>, of a body about a specified axis whose direction is specified by the unit vector <math>\mathbf{\hat{k}}</math> and passes through the body at a point <math>\mathbf{R}</math> is as follows:<ref name="Kane"/> <math display="block">I_L = \mathbf{\hat{k}} \cdot \left(-\sum_{i=1}^N m_i \left[\Delta\mathbf{r}_i\right]^2 \right) \mathbf{\hat{k}} = \mathbf{\hat{k}} \cdot \mathbf{I}_\mathbf{R} \mathbf{\hat{k}} = \mathbf{\hat{k}}^\mathsf{T} \mathbf{I}_\mathbf{R} \mathbf{\hat{k}},</math> where <math>\mathbf{I_R}</math> is the moment of inertia matrix of the system relative to the reference point <math>\mathbf{R}</math>, and <math>[\Delta\mathbf{r}_i]</math> is the skew symmetric matrix obtained from the vector <math>\Delta\mathbf{r}_i = \mathbf{r}_i - \mathbf{R}</math>. This is derived as follows. Let a rigid assembly of <math>n</math> particles, <math>P_i, i = 1, \dots, n</math>, have coordinates <math>\mathbf{r}_i</math>. Choose <math>\mathbf{R}</math> as a reference point and compute the moment of inertia around a line L defined by the unit vector <math>\mathbf{\hat{k}}</math> through the reference point <math>\mathbf{R}</math>, <math>\mathbf{L}(t) = \mathbf{R} + t\mathbf{\hat{k}}</math>. The perpendicular vector from this line to the particle <math>P_i</math> is obtained from <math>\Delta\mathbf{r}_i</math> by removing the component that projects onto <math>\mathbf{\hat{k}}</math>. <math display="block"> \Delta\mathbf{r}_i^\perp = \Delta\mathbf{r}_i - \left(\mathbf{\hat{k}} \cdot \Delta\mathbf{r}_i\right)\mathbf{\hat{k}} = \left(\mathbf{E} - \mathbf{\hat{k}}\mathbf{\hat{k}}^\mathsf{T}\right) \Delta\mathbf{r}_i, </math> where <math>\mathbf{E}</math> is the identity matrix, so as to avoid confusion with the inertia matrix, and <math>\mathbf{\hat{k}}\mathbf{\hat{k}}^\mathsf{T}</math> is the outer product matrix formed from the unit vector <math>\mathbf{\hat{k}}</math> along the line <math>L</math>. To relate this scalar moment of inertia to the inertia matrix of the body, introduce the skew-symmetric matrix <math>\left[\mathbf{\hat{k}}\right]</math> such that <math>\left[\mathbf{\hat{k}}\right]\mathbf{y} = \mathbf{\hat{k}} \times \mathbf{y}</math>, then we have the identity <math display="block"> -\left[\mathbf{\hat{k}}\right]^2 \equiv \left|\mathbf{\hat{k}}\right|^2\left(\mathbf{E} - \mathbf{\hat{k}}\mathbf{\hat{k}}^\mathsf{T}\right) = \mathbf{E} - \mathbf{\hat{k}}\mathbf{\hat{k}}^\mathsf{T}, </math> noting that <math>\mathbf{\hat{k}}</math> is a unit vector. The magnitude squared of the perpendicular vector is <math display="block">\begin{align} \left|\Delta\mathbf{r}_i^\perp\right|^2 &= \left(-\left[\mathbf{\hat{k}}\right]^2 \Delta\mathbf{r}_i\right) \cdot \left(-\left[\mathbf{\hat{k}}\right]^2 \Delta\mathbf{r}_i\right) \\ &= \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \cdot \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \end{align}</math> The simplification of this equation uses the triple scalar product identity <math display="block"> \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \cdot \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \equiv \left(\left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \times \mathbf{\hat{k}}\right) \cdot \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right), </math> where the dot and the cross products have been interchanged. Exchanging products, and simplifying by noting that <math>\Delta\mathbf{r}_i</math> and <math>\mathbf{\hat{k}}</math> are orthogonal: <math display="block">\begin{align} &\left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \cdot \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \\ ={} &\left(\left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \times \mathbf{\hat{k}}\right) \cdot \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right) \\ ={} &\left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right) \cdot \left(-\Delta\mathbf{r}_i \times \mathbf{\hat{k}}\right) \\ ={} &-\mathbf{\hat{k}} \cdot \left(\Delta\mathbf{r}_i \times \Delta\mathbf{r}_i \times \mathbf{\hat{k}}\right) \\ ={} &-\mathbf{\hat{k}} \cdot \left[\Delta\mathbf{r}_i\right]^2 \mathbf{\hat{k}}. \end{align}</math> Thus, the moment of inertia around the line <math>L</math> through <math>\mathbf{R}</math> in the direction <math>\mathbf{\hat{k}}</math> is obtained from the calculation <math display="block">\begin{align} I_L &= \sum_{i=1}^N m_i \left|\Delta\mathbf{r}_i^\perp\right|^2 \\ &= -\sum_{i=1}^N m_i \mathbf{\hat{k}} \cdot \left[\Delta\mathbf{r}_i\right]^2\mathbf{\hat{k}} = \mathbf{\hat{k}} \cdot \left(-\sum_{i=1}^N m_i \left[\Delta\mathbf{r}_i\right]^2 \right) \mathbf{\hat{k}} \\ &= \mathbf{\hat{k}} \cdot \mathbf{I}_\mathbf{R} \mathbf{\hat{k}} = \mathbf{\hat{k}}^\mathsf{T} \mathbf{I}_\mathbf{R} \mathbf{\hat{k}}, \end{align}</math> where <math>\mathbf{I_R}</math> is the moment of inertia matrix of the system relative to the reference point <math>\mathbf{R}</math>. This shows that the inertia matrix can be used to calculate the moment of inertia of a body around any specified rotation axis in the body.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Moment of inertia
(section)
Add topic