Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hyperbola
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Quadratic equation=== A hyperbola can also be defined as a second-degree equation in the Cartesian coordinates <math>(x, y)</math> in the [[plane (geometry)|plane]], <math display=block> A_{xx} x^2 + 2 A_{xy} xy + A_{yy} y^2 + 2 B_x x + 2 B_y y + C = 0, </math> provided that the constants <math>A_{xx},</math> <math>A_{xy},</math> <math>A_{yy},</math> <math>B_x,</math> <math>B_y,</math> and <math>C</math> satisfy the determinant condition <math display=block> D := \begin{vmatrix} A_{xx} & A_{xy} \\ A_{xy} & A_{yy} \end{vmatrix} < 0. </math> This determinant is conventionally called the [[discriminant#Discriminant of a conic section|discriminant]] of the conic section.<ref>{{cite book |title=Math refresher for scientists and engineers |last1=Fanchi |first1=John R. |publisher=John Wiley and Sons |year=2006 |isbn=0-471-75715-2 |url=https://books.google.com/books?id=75mAJPcAWT8C |at=[https://books.google.com/books?id=75mAJPcAWT8C&pg=PA44 Section 3.2, pages 44–45] }}</ref> A special case of a hyperbola—the ''[[degenerate conic|degenerate hyperbola]]'' consisting of two intersecting lines—occurs when another determinant is zero: <math display=block> \Delta := \begin{vmatrix} A_{xx} & A_{xy} & B_x \\ A_{xy} & A_{yy} & B_y \\ B_x & B_y & C \end{vmatrix} = 0. </math> This determinant <math>\Delta</math> is sometimes called the discriminant of the conic section.<ref>{{cite book |last1=Korn |first1=Granino A |author2-link=Theresa M. Korn |last2=Korn |first2=Theresa M. |title=Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review |publisher=Dover Publ. |edition=second |year=2000 |page=40}}</ref> The general equation's coefficients can be obtained from known semi-major axis <math>a,</math> semi-minor axis <math>b,</math> center coordinates <math>(x_\circ, y_\circ)</math>, and rotation angle <math>\theta</math> (the angle from the positive horizontal axis to the hyperbola's major axis) using the formulae: <math display=block>\begin{align} A_{xx} &= -a^2 \sin^2\theta + b^2 \cos^2\theta, & B_{x} &= -A_{xx} x_\circ - A_{xy} y_\circ, \\[1ex] A_{yy} &= -a^2 \cos^2\theta + b^2 \sin^2\theta, & B_{y} &= - A_{xy} x_\circ - A_{yy} y_\circ, \\[1ex] A_{xy} &= \left(a^2 + b^2\right) \sin\theta \cos\theta, & C &= A_{xx} x_\circ^2 + 2A_{xy} x_\circ y_\circ + A_{yy} y_\circ^2 - a^2 b^2. \end{align}</math> These expressions can be derived from the canonical equation <math display=block>\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1</math> by a [[rigid transformation|translation and rotation]] of the coordinates {{nobr|<math>(x, y)</math>:}} <math display=block>\begin{alignat}{2} X &= \phantom+\left(x - x_\circ\right) \cos\theta &&+ \left(y - y_\circ\right) \sin\theta, \\ Y &= -\left(x - x_\circ\right) \sin\theta &&+ \left(y - y_\circ\right) \cos\theta. \end{alignat}</math> Given the above general parametrization of the hyperbola in Cartesian coordinates, the eccentricity can be found using the formula in [[Conic section#Eccentricity in terms of coefficients]]. The center <math>(x_c, y_c)</math> of the hyperbola may be determined from the formulae <math display=block>\begin{align} x_c &= -\frac{1}{D} \, \begin{vmatrix} B_x & A_{xy} \\ B_y & A_{yy} \end{vmatrix} \,, \\[1ex] y_c &= -\frac{1}{D} \, \begin{vmatrix} A_{xx} & B_x \\ A_{xy} & B_y \end{vmatrix} \,. \end{align}</math> In terms of new coordinates, <math>\xi = x - x_c</math> and <math>\eta = y - y_c,</math> the defining equation of the hyperbola can be written <math display=block> A_{xx} \xi^2 + 2A_{xy} \xi\eta + A_{yy} \eta^2 + \frac \Delta D = 0. </math> The principal axes of the hyperbola make an angle <math>\varphi</math> with the positive <math>x</math>-axis that is given by <math display=block>\tan (2\varphi) = \frac{2A_{xy}}{A_{xx} - A_{yy}}.</math> Rotating the coordinate axes so that the <math>x</math>-axis is aligned with the transverse axis brings the equation into its '''canonical form''' <math display=block>\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.</math> The major and minor semiaxes <math>a</math> and <math>b</math> are defined by the equations <math display=block>\begin{align} a^2 &= -\frac{\Delta}{\lambda_1 D} = -\frac{\Delta}{\lambda_1^2 \lambda_2}, \\[1ex] b^2 &= -\frac{\Delta}{\lambda_2 D} = -\frac{\Delta}{\lambda_1 \lambda_2^2}, \end{align}</math> where <math>\lambda_1</math> and <math>\lambda_2</math> are the [[root of a function|roots]] of the [[quadratic equation]] <math display=block>\lambda^2 - \left( A_{xx} + A_{yy} \right)\lambda + D = 0.</math> For comparison, the corresponding equation for a degenerate hyperbola (consisting of two intersecting lines) is <math display=block>\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0.</math> The tangent line to a given point <math>(x_0, y_0)</math> on the hyperbola is defined by the equation <math display=block>E x + F y + G = 0</math> where <math>E,</math> <math>F,</math> and <math>G</math> are defined by <math display=block>\begin{align} E &= A_{xx} x_0 + A_{xy} y_0 + B_x, \\[1ex] F &= A_{xy} x_0 + A_{yy} y_0 + B_y, \\[1ex] G &= B_x x_0 + B_y y_0 + C. \end{align}</math> The [[normal (geometry)|normal line]] to the hyperbola at the same point is given by the equation <math display=block>F(x - x_0) - E(y - y_0) = 0.</math> The normal line is perpendicular to the tangent line, and both pass through the same point <math>(x_0, y_0).</math> From the equation <math display=block>\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \qquad 0 < b \leq a,</math> the left focus is <math>(-ae,0)</math> and the right focus is <math>(ae,0), </math> where <math>e</math> is the eccentricity. Denote the distances from a point <math>(x, y)</math> to the left and right foci as <math>r_1</math> and <math>r_2.</math> For a point on the right branch, <math display=block> r_1 - r_2 = 2 a, </math> and for a point on the left branch, <math display=block> r_2 - r_1 = 2 a. </math> This can be proved as follows: If <math>(x, y)</math> is a point on the hyperbola the distance to the left focal point is <math display=block> r_1^2 = (x+a e)^2 + y^2 = x^2 + 2 x a e + a^2 e^2 + \left(x^2-a^2\right) \left(e^2-1\right) = (e x + a)^2. </math> To the right focal point the distance is <math display=block> r_2^2 = (x-a e)^2 + y^2 = x^2 - 2 x a e + a^2 e^2 + \left(x^2-a^2\right) \left(e^2-1\right) = (e x - a)^2. </math> If <math>(x, y)</math> is a point on the right branch of the hyperbola then <math>ex > a</math> and <math display=block>\begin{align} r_1 &= e x + a, \\ r_2 &= e x - a. \end{align}</math> Subtracting these equations one gets <math display=block>r_1 - r_2 = 2a.</math> If <math>(x, y)</math> is a point on the left branch of the hyperbola then <math>ex < -a</math> and <math display=block>\begin{align} r_1 &= - e x - a, \\ r_2 &= - e x + a. \end{align}</math> Subtracting these equations one gets <math display=block>r_2 - r_1 = 2a.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hyperbola
(section)
Add topic