Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gamma function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Properties === The [[Bohr–Mollerup theorem]] states that among all functions extending the factorial functions to the positive real numbers, only the gamma function is [[log-convex]], that is, its [[natural logarithm]] is [[convex function|convex]] on the positive real axis. Another characterisation is given by the [[Wielandt theorem]]. The gamma function is the unique function that simultaneously satisfies # <math>\Gamma(1) = 1</math>, # <math>\Gamma(z+1) = z \Gamma(z)</math> for all complex numbers <math>z</math> except the non-positive integers, and, # for integer {{mvar|n}}, <math display="inline">\lim_{n \to \infty} \frac{\Gamma(n+z)}{\Gamma(n)\;n^z} = 1</math> for all complex numbers <math>z</math>.<ref name="Davis" /> In a certain sense, the log-gamma function is the more natural form; it makes some intrinsic attributes of the function clearer. A striking example is the [[Taylor series]] of {{math|logΓ}} around 1: <math display="block">\operatorname{log\Gamma}(z+1)= -\gamma z +\sum_{k=2}^\infty \frac{\zeta(k)}{k} \, (-z)^k \qquad \forall\; |z| < 1</math> with {{math|''ζ''(''k'')}} denoting the [[Riemann zeta function]] at {{mvar|k}}. So, using the following property: <math display="block">\zeta(s) \Gamma(s) = \int_0^\infty \frac{t^s}{e^t-1} \, \frac{dt}{t}</math> an integral representation for the log-gamma function is: <math display="block">\operatorname{log\Gamma}(z+1)= -\gamma z + \int_0^\infty \frac{e^{-zt} - 1 + z t}{t \left(e^t - 1\right)} \, dt </math> or, setting {{math|1=''z'' = 1}} to obtain an integral for {{math|''γ''}}, we can replace the {{math|''γ''}} term with its integral and incorporate that into the above formula, to get: <math display="block">\operatorname{log\Gamma}(z+1)= \int_0^\infty \frac{e^{-zt} - ze^{-t} - 1 + z}{t \left(e^t -1\right)} \, dt\,. </math> There also exist special formulas for the logarithm of the gamma function for rational {{mvar|z}}. For instance, if <math>k</math> and <math>n</math> are integers with <math>k<n</math> and <math>k\neq n/2 \,,</math> then<ref name="iaroslav_07">{{cite journal |last=Blagouchine |first=Iaroslav V. |year=2015 |title=A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations |journal=Journal of Number Theory |volume=148 |pages=537–592 |arxiv=1401.3724 |doi=10.1016/j.jnt.2014.08.009}}</ref> <math display="block"> \begin{align} \operatorname{log\Gamma} \left(\frac{k}{n}\right) = {} & \frac{\,(n-2k)\log2\pi\,}{2n} + \frac{1}{2}\left\{\,\log\pi-\log\sin\frac{\pi k}{n} \,\right\} + \frac{1}{\pi}\!\sum_{r=1}^{n-1}\frac{\,\gamma+\log r\,}{r}\cdot\sin\frac{\,2\pi r k\,}{n} \\ & {} - \frac{1}{2\pi}\sin\frac{2\pi k}{n}\cdot\!\int_0^\infty \!\!\frac{\,e^{-nx}\!\cdot\log x\,}{\,\cosh x -\cos( 2\pi k/n )\,}\,{\mathrm d}x. \end{align} </math>This formula is sometimes used for numerical computation, since the integrand decreases very quickly.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gamma function
(section)
Add topic