Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ellipse
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Conjugate diameters == === Definition of conjugate diameters === [[File:Parallelproj-kreis-ellipse.svg|400px|thumb|Orthogonal diameters of a circle with a square of tangents, midpoints of parallel chords and an affine image, which is an ellipse with conjugate diameters, a parallelogram of tangents and midpoints of chords.]] {{Main|Conjugate diameters}} A circle has the following property: : The midpoints of parallel chords lie on a diameter. An affine transformation preserves parallelism and midpoints of line segments, so this property is true for any ellipse. (Note that the parallel chords and the diameter are no longer orthogonal.) ; Definition: Two diameters <math>d_1,\, d_2</math> of an ellipse are ''conjugate'' if the midpoints of chords parallel to <math>d_1</math> lie on <math>d_2\ .</math> From the diagram one finds: : Two diameters <math>\overline{P_1 Q_1},\, \overline{P_2 Q_2}</math> of an ellipse are conjugate whenever the tangents at <math>P_1</math> and <math>Q_1</math> are parallel to <math>\overline{P_2 Q_2}</math>. Conjugate diameters in an ellipse generalize orthogonal diameters in a circle. In the parametric equation for a general ellipse given above, <math display="block">\vec x = \vec p(t) = \vec f\!_0 +\vec f\!_1 \cos t + \vec f\!_2 \sin t,</math> any pair of points <math>\vec p(t),\ \vec p(t + \pi)</math> belong to a diameter, and the pair <math>\vec p\left(t + \tfrac{\pi}{2}\right),\ \vec p\left(t - \tfrac{\pi}{2}\right)</math> belong to its conjugate diameter. For the common parametric representation <math>(a\cos t,b\sin t)</math> of the ellipse with equation <math>\tfrac{x^2}{a^2}+\tfrac{y^2}{b^2}=1</math> one gets: The points :<math>(x_1,y_1)=(\pm a\cos t,\pm b\sin t)\quad </math> (signs: (+,+) or (β,β) ) :<math>(x_2,y_2)=({\color{red}{\mp}} a\sin t,\pm b\cos t)\quad </math> (signs: (β,+) or (+,β) ) :are conjugate and :<math>\frac{x_1x_2}{a^2}+\frac{y_1y_2}{b^2}=0\ .</math> In case of a circle the last equation collapses to <math>x_1x_2+y_1y_2=0\ . </math> === Theorem of Apollonios on conjugate diameters === [[File:Elli-apoll-cd.svg|upright=1.2|thumb|Theorem of Apollonios]] [[File:Elli-apoll-area-altern.svg|thumb|upright=1.2|For the alternative area formula]] For an ellipse with semi-axes <math>a,\, b</math> the following is true:<ref>Bronstein&Semendjajew: ''Taschenbuch der Mathematik'', Verlag Harri Deutsch, 1979, {{ISBN|3871444928}}, p. 274.</ref><ref>''Encyclopedia of Mathematics'', Springer, URL: http://encyclopediaofmath.org/index.php?title=Apollonius_theorem&oldid=17516 .</ref> : Let <math>c_1 </math> and <math> c_2</math> be halves of two conjugate diameters (see diagram) then :# <math>c_1^2 + c_2^2 = a^2 + b^2</math>. :# The ''triangle'' <math>O,P_1,P_2</math> with sides <math>c_1,\, c_2</math> (see diagram) has the constant area <math display="inline">A_\Delta = \frac{1}{2}ab</math>, which can be expressed by <math>A_\Delta=\tfrac 1 2 c_2d_1=\tfrac 1 2 c_1c_2\sin\alpha</math>, too. <math>d_1</math> is the altitude of point <math>P_1</math> and <math>\alpha</math> the angle between the half diameters. Hence the area of the ellipse (see section [[#Metric properties|metric properties]]) can be written as <math>A_{el}=\pi ab=\pi c_2d_1=\pi c_1c_2\sin\alpha</math>. :# The parallelogram of tangents adjacent to the given conjugate diameters has the <math>\text{Area}_{12} = 4ab\ .</math> ; Proof: Let the ellipse be in the canonical form with parametric equation <math display="block">\vec p(t) = (a\cos t,\, b\sin t).</math> The two points <math display="inline">\vec c_1 = \vec p(t),\ \vec c_2 = \vec p\left(t + \frac{\pi}{2}\right)</math> are on conjugate diameters (see previous section). From trigonometric formulae one obtains <math>\vec c_2 = (-a\sin t,\, b\cos t)^\mathsf{T}</math> and <math display="block">\left|\vec c_1\right|^2 + \left|\vec c_2\right|^2 = \cdots = a^2 + b^2\, .</math> The area of the triangle generated by <math>\vec c_1,\, \vec c_2</math> is <math display="block">A_\Delta = \tfrac{1}{2} \det\left(\vec c_1,\, \vec c_2\right) = \cdots = \tfrac{1}{2}ab</math> and from the diagram it can be seen that the area of the parallelogram is 8 times that of <math>A_\Delta</math>. Hence <math display="block">\text{Area}_{12} = 4ab\, .</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ellipse
(section)
Add topic