Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Determinant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Trace === The [[Trace (linear algebra)|trace]] tr(''A'') is by definition the sum of the diagonal entries of {{mvar|A}} and also equals the sum of the eigenvalues. Thus, for complex matrices {{mvar|A}}, :<math>\det(\exp(A)) = \exp(\operatorname{tr}(A))</math> or, for real matrices {{mvar|A}}, :<math>\operatorname{tr}(A) = \log(\det(\exp(A))).</math> Here exp({{mvar|A}}) denotes the [[matrix exponential]] of {{mvar|A}}, because every eigenvalue {{mvar|λ}} of {{mvar|A}} corresponds to the eigenvalue exp({{mvar|λ}}) of exp({{mvar|A}}). In particular, given any [[matrix logarithm|logarithm]] of {{mvar|A}}, that is, any matrix {{mvar|L}} satisfying :<math>\exp(L) = A</math> the determinant of {{mvar|A}} is given by :<math>\det(A) = \exp(\operatorname{tr}(L)).</math> For example, for {{math|1=''n'' = 2}}, {{math|1=''n'' = 3}}, and {{math|1=''n'' = 4}}, respectively, :<math>\begin{align} \det(A) &= \frac{1}{2}\left(\left(\operatorname{tr}(A)\right)^2 - \operatorname{tr}\left(A^2\right)\right), \\ \det(A) &= \frac{1}{6}\left(\left(\operatorname{tr}(A)\right)^3 - 3\operatorname{tr}(A) ~ \operatorname{tr}\left(A^2\right) + 2 \operatorname{tr}\left(A^3\right)\right), \\ \det(A) &= \frac{1}{24}\left(\left(\operatorname{tr}(A)\right)^4 - 6\operatorname{tr}\left(A^2\right)\left(\operatorname{tr}(A)\right)^2 + 3\left(\operatorname{tr}\left(A^2\right)\right)^2 + 8\operatorname{tr}\left(A^3\right)~\operatorname{tr}(A) - 6\operatorname{tr}\left(A^4\right)\right). \end{align}</math> cf. [[Cayley–Hamilton theorem#Illustration for specific dimensions and practical applications|Cayley-Hamilton theorem]]. Such expressions are deducible from combinatorial arguments, [[Newton's identities#Computing coefficients|Newton's identities]], or the [[Faddeev–LeVerrier algorithm]]. That is, for generic {{mvar|n}}, {{math|det''A'' {{=}} (−1)<sup>''n''</sup>''c''<sub>0</sub>}} the signed constant term of the [[characteristic polynomial]], determined recursively from :<math>c_n = 1; ~~~c_{n-m} = -\frac{1}{m}\sum_{k=1}^m c_{n-m+k} \operatorname{tr}\left(A^k\right) ~~(1 \le m \le n)~.</math> In the general case, this may also be obtained from<ref>A proof can be found in the Appendix B of {{cite journal | last1 = Kondratyuk | first1 = L. A. | last2 = Krivoruchenko | first2 = M. I. | year = 1992 | title = Superconducting quark matter in SU(2) color group | journal = Zeitschrift für Physik A | volume = 344 | issue = 1| pages = 99–115 | doi = 10.1007/BF01291027 | bibcode = 1992ZPhyA.344...99K | s2cid = 120467300 }}</ref> :<math>\det(A) = \sum_{\begin{array}{c}k_1,k_2,\ldots,k_n \geq 0\\k_1+2k_2+\cdots+nk_n=n\end{array}}\prod_{l=1}^n \frac{(-1)^{k_l+1}}{l^{k_l}k_l!} \operatorname{tr}\left(A^l\right)^{k_l},</math> where the sum is taken over the set of all integers {{math|''k<sub>l</sub>'' ≥ 0}} satisfying the equation :<math>\sum_{l=1}^n lk_l = n.</math> The formula can be expressed in terms of the complete exponential [[Bell polynomial]] of ''n'' arguments ''s''<sub>''l''</sub> = −(''l'' – 1)! tr(''A''<sup>''l''</sup>) as :<math>\det(A) = \frac{(-1)^n}{n!} B_n(s_1, s_2, \ldots, s_n).</math> This formula can also be used to find the determinant of a matrix {{math|''A<sup>I</sup><sub>J</sub>''}} with multidimensional indices {{math|1=''I'' = (''i''<sub>1</sub>, ''i''<sub>2</sub>, ..., ''i<sub>r</sub>'')}} and {{math|1=''J'' = (''j''<sub>1</sub>, ''j''<sub>2</sub>, ..., ''j<sub>r</sub>'')}}. The product and trace of such matrices are defined in a natural way as :<math>(AB)^I_J = \sum_K A^I_K B^K_J, \operatorname{tr}(A) = \sum_I A^I_I.</math> An important arbitrary dimension {{mvar|n}} identity can be obtained from the [[Mercator series]] expansion of the logarithm when the expansion converges. If every eigenvalue of ''A'' is less than 1 in absolute value, :<math>\det(I + A) = \sum_{k=0}^\infty \frac{1}{k!} \left(-\sum_{j=1}^\infty \frac{(-1)^j}{j} \operatorname{tr}\left(A^j\right)\right)^k\,,</math> where {{math|''I''}} is the identity matrix. More generally, if :<math>\sum_{k=0}^\infty \frac{1}{k!} \left(-\sum_{j=1}^\infty \frac{(-1)^j s^j}{j}\operatorname{tr}\left(A^j\right)\right)^k\,,</math> is expanded as a formal [[power series]] in {{mvar|s}} then all coefficients of {{mvar|s}}<sup>{{mvar|m}}</sup> for {{math|''m'' > ''n''}} are zero and the remaining polynomial is {{math|det(''I'' + ''sA'')}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Determinant
(section)
Add topic