Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Brouwer fixed-point theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===A proof by Hirsch=== There is also a quick proof, by [[Morris Hirsch]], based on the impossibility of a differentiable retraction. The [[indirect proof]] starts by noting that the map ''f'' can be approximated by a smooth map retaining the property of not fixing a point; this can be done by using the [[Weierstrass approximation theorem]] or by [[convolution|convolving]] with smooth [[bump function]]s. One then defines a retraction as above which must now be differentiable. Such a retraction must have a non-singular value, by [[Sard's theorem]], which is also non-singular for the restriction to the boundary (which is just the identity). Thus the inverse image would be a 1-manifold with boundary. The boundary would have to contain at least two end points, both of which would have to lie on the boundary of the original ball—which is impossible in a retraction.<ref>{{harvnb|Hirsch|1988}}</ref> R. Bruce Kellogg, Tien-Yien Li, and [[James A. Yorke]] turned Hirsch's proof into a [[Computability|computable]] proof by observing that the retract is in fact defined everywhere except at the fixed points.{{sfn|Kellogg|Li|Yorke|1976}} For almost any point, ''q'', on the boundary, (assuming it is not a fixed point) the one manifold with boundary mentioned above does exist and the only possibility is that it leads from ''q'' to a fixed point. It is an easy numerical task to follow such a path from ''q'' to the fixed point so the method is essentially computable.{{sfn|Chow|Mallet-Paret|Yorke|1978}} gave a conceptually similar path-following version of the homotopy proof which extends to a wide variety of related problems.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Brouwer fixed-point theorem
(section)
Add topic