Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Transcription factor
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Clinical significance == Transcription factors are of clinical significance for at least two reasons: (1) mutations can be associated with specific diseases, and (2) they can be targets of medications. === Disorders === Due to their important roles in development, intercellular signaling, and cell cycle, some human diseases have been associated with [[mutation]]s in transcription factors.<ref name="isbn0-19-511239-3">{{Cite book | vauthors = Semenza GL |url= https://archive.org/details/transcriptionfac00seme |title=Transcription factors and human disease |publisher=Oxford University Press |year=1999 |isbn=978-0-19-511239-9 |location=Oxford [Oxfordshire] |url-access=registration}}</ref> Many transcription factors are either [[tumor suppressor]]s or [[oncogene]]s, and, thus, mutations or aberrant regulation of them is associated with cancer. Three groups of transcription factors are known to be important in human cancer: (1) the [[NF-kappaB]] and [[AP-1 transcription factor|AP-1]] families, (2) the [[STAT protein|STAT]] family and (3) the [[steroid hormone receptor|steroid receptors]].<ref name="pmid16475943">{{Cite journal |vauthors=Libermann TA, Zerbini LF |date=February 2006 |title=Targeting transcription factors for cancer gene therapy |journal=Current Gene Therapy |volume=6 |issue=1 |pages=17β33 |doi=10.2174/156652306775515501 |pmid=16475943}}</ref> Below are a few of the better-studied examples: {| class="wikitable" |- ! Condition ! Description ! Locus |- | [[Rett syndrome]] | Mutations in the [[MECP2]] transcription factor are associated with [[Rett syndrome]], a neurodevelopmental disorder.<ref name="pmid16647848">{{Cite journal |vauthors=Moretti P, Zoghbi HY |date=June 2006 |title=MeCP2 dysfunction in Rett syndrome and related disorders |journal=Current Opinion in Genetics & Development |volume=16 |issue=3 |pages=276β81 |doi=10.1016/j.gde.2006.04.009 |pmid=16647848}}</ref><ref name="pmid17317146">{{Cite journal |vauthors=Chadwick LH, Wade PA |date=April 2007 |title=MeCP2 in Rett syndrome: transcriptional repressor or chromatin architectural protein? |url=https://zenodo.org/record/1258987 |url-status=live |journal=Current Opinion in Genetics & Development |volume=17 |issue=2 |pages=121β5 |doi=10.1016/j.gde.2007.02.003 |pmid=17317146 |archive-url=https://web.archive.org/web/20231002233545/https://zenodo.org/record/1258987 |archive-date=Oct 2, 2023 |via=Zenodo}}</ref> | Xq28 |- | [[Diabetes]] | A rare form of [[diabetes]] called [[MODY]] (Maturity onset diabetes of the young) can be caused by mutations in [[hepatocyte nuclear factors]] (HNFs)<ref name="pmid17923767">{{Cite book |title=Distinct roles of HNF1beta, HNF1alpha, and HNF4alpha in regulating pancreas development, beta-cell function and growth |vauthors=Maestro MA, Cardalda C, Boj SF, Luco RF, Servitja JM, Ferrer J |publisher=Karger Medical and Scientific Publishers |year=2007 |isbn=978-3-8055-8385-5 |series=Endocrine Development |volume=12 |pages=33β45 |chapter=Distinct Roles of HNF1 Ξ , HNF1 Ξ± , and HNF4 Ξ± in Regulating Pancreas Development, Ξ -Cell Function and Growth |doi=10.1159/000109603 |pmid=17923767 |chapter-url=https://books.google.com/books?id=AzvFFxY-3CMC&pg=PA33}}</ref> or [[Pdx1|insulin promoter factor-1]] (IPF1/Pdx1).<ref name="pmid18360684">{{Cite journal |vauthors=Al-Quobaili F, Montenarh M |date=April 2008 |title=Pancreatic duodenal homeobox factor-1 and diabetes mellitus type 2 (review) |url=http://www.spandidos-publications.com/ijmm/article.jsp?article_id=ijmm_21_4_399 |url-status=live |journal=International Journal of Molecular Medicine |volume=21 |issue=4 |pages=399β404 |doi=10.3892/ijmm.21.4.399 |pmid=18360684 |archive-url=https://web.archive.org/web/20231002232026/https://www.spandidos-publications.com/ijmm/21/4/399/abstract |archive-date=Oct 2, 2023 |doi-access=free}}</ref> | multiple |- | [[Apraxia of speech#Childhood apraxia of speech|Developmental verbal dyspraxia]] | Mutations in the [[FOXP2]] transcription factor are associated with [[Apraxia of speech#Childhood apraxia of speech|developmental verbal dyspraxia]], a disease in which individuals are unable to produce the finely coordinated movements required for speech.<ref name="pmid17330859">{{Cite journal |vauthors=Lennon PA, Cooper ML, Peiffer DA, Gunderson KL, Patel A, Peters S, Cheung SW, Bacino CA |date=April 2007 |title=Deletion of 7q31.1 supports involvement of ''FOXP2'' in language impairment: clinical report and review |journal=American Journal of Medical Genetics. Part A |volume=143A |issue=8 |pages=791β8 |doi=10.1002/ajmg.a.31632 |pmid=17330859 |s2cid=22021740}}</ref> | 7q31 |- | [[Autoimmune diseases]] | Mutations in the [[FOXP3]] transcription factor cause a rare form of [[autoimmune disease]] called [[IPEX (syndrome)|IPEX]].<ref name="pmid18317533">{{Cite journal |vauthors=van der Vliet HJ, Nieuwenhuis EE |year=2007 |title=IPEX as a result of mutations in FOXP3 |journal=Clinical & Developmental Immunology |volume=2007 |pages=1β5 |doi=10.1155/2007/89017 |pmc=2248278 |pmid=18317533 |doi-access=free}}</ref> | Xp11.23-q13.3 |- | [[Li-Fraumeni syndrome]] | Caused by mutations in the tumor suppressor [[p53 (protein)|p53]].<ref name="pmid15917654">{{Cite journal |vauthors=Iwakuma T, Lozano G, Flores ER |date=July 2005 |title=Li-Fraumeni syndrome: a p53 family affair |journal=Cell Cycle |volume=4 |issue=7 |pages=865β7 |doi=10.4161/cc.4.7.1800 |pmid=15917654 |doi-access=free}}</ref> | 17p13.1 |- | [[Breast cancer]] | The [[STAT protein|STAT]] family is relevant to [[breast cancer]].<ref>{{Cite journal |vauthors=Clevenger CV |date=November 2004 |title=Roles and Regulation of Stat Family Transcription Factors in Human Breast Cancer |journal=American Journal of Pathology |type=Review |volume=165 |issue=5 |pages=1449β1460 |doi=10.1016/S0002-9440(10)63403-7 |pmc=1618660 |pmid=15509516 |doi-access=free}}</ref> | multiple |- | Multiple cancers | The [[HOX gene|HOX]] family are involved in a variety of cancers.<ref>{{Cite web |title="Transcription factors as targets and markers in cancer" Workshop 2007 |url=http://www.ias.surrey.ac.uk/reports/hox-report.html |url-status=dead |archive-url=https://web.archive.org/web/20120525104734/http://www.ias.surrey.ac.uk/reports/hox-report.html |archive-date=25 May 2012 |access-date=14 December 2009}}</ref> | multiple |- |[[Osteoarthritis]] |[[Mutation]] or reduced activity of [[SOX9]]<ref>{{Cite journal |vauthors=Govindaraj K, Hendriks J, Lidke DS, Karperien M, Post JN |date=January 2019 |title=Changes in Fluorescence Recovery After Photobleaching (FRAP) as an indicator of SOX9 transcription factor activity |journal=Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms |volume=1862 |issue=1 |pages=107β117 |doi=10.1016/j.bbagrm.2018.11.001 |pmid=30465885 |doi-access=free}}</ref> | |} === Potential drug targets === {{See also|Therapeutic gene modulation}} Approximately 10% of currently prescribed drugs directly target the [[nuclear receptor]] class of transcription factors.<ref name="pmid17139284">{{Cite journal |vauthors=Overington JP, Al-Lazikani B, Hopkins AL |date=December 2006 |title=How many drug targets are there? |journal=Nature Reviews. Drug Discovery |volume=5 |issue=12 |pages=993β6 |doi=10.1038/nrd2199 |pmid=17139284 |s2cid=11979420}}</ref> Examples include [[tamoxifen]] and [[bicalutamide]] for the treatment of [[breast cancer|breast]] and [[prostate cancer]], respectively, and various types of [[Glucocorticoid#Anti-inflammatory|anti-inflammatory]] and [[anabolic steroid|anabolic]] [[steroid]]s.<ref>{{Cite journal |vauthors=Gronemeyer H, Gustafsson JA, Laudet V |date=November 2004 |title=Principles for modulation of the nuclear receptor superfamily |journal=Nature Reviews. Drug Discovery |volume=3 |issue=11 |pages=950β64 |doi=10.1038/nrd1551 |pmid=15520817 |s2cid=205475111}}</ref> In addition, transcription factors are often indirectly modulated by drugs through [[signaling cascade]]s. It might be possible to directly target other less-explored transcription factors such as [[NF-ΞΊB#As a drug target|NF-ΞΊB]] with drugs.<ref name="pmid8049612">{{Cite journal |vauthors=Bustin SA, McKay IA |date=June 1994 |title=Transcription factors: targets for new designer drugs |journal=British Journal of Biomedical Science |volume=51 |issue=2 |pages=147β57 |pmid=8049612}}</ref><ref name="pmid7549464">{{Cite journal |vauthors=Butt TR, Karathanasis SK |year=1995 |title=Transcription factors as drug targets: opportunities for therapeutic selectivity |journal=Gene Expression |volume=4 |issue=6 |pages=319β36 |pmc=6134363 |pmid=7549464}}</ref><ref name="pmid9755455">{{Cite journal |vauthors=Papavassiliou AG |date=August 1998 |title=Transcription-factor-modulating agents: precision and selectivity in drug design |journal=Molecular Medicine Today |volume=4 |issue=8 |pages=358β66 |doi=10.1016/S1357-4310(98)01303-3 |pmid=9755455}}</ref><ref name="pmid15790306">{{Cite journal |vauthors=Ghosh D, Papavassiliou AG |year=2005 |title=Transcription factor therapeutics: long-shot or lodestone |journal=Current Medicinal Chemistry |volume=12 |issue=6 |pages=691β701 |doi=10.2174/0929867053202197 |pmid=15790306}}</ref> Transcription factors outside the nuclear receptor family are thought to be more difficult to target with [[small molecule]] therapeutics since it is not clear that they are [[drug design#Rational drug discovery|"drugable"]] but progress has been made on Pax2<ref name="pmid28094913">{{Cite journal |vauthors=Grimley E, Liao C, Ranghini E, Nikolovska-Coleska Z, Dressler G |year=2017 |title=Inhibition of Pax2 Transcription Activation with a Small Molecule that Targets the DNA Binding Domain |journal=ACS Chemical Biology |volume=12 |issue=3 |pages=724β734 |doi=10.1021/acschembio.6b00782 |pmc=5761330 |pmid=28094913}}</ref><ref name="pmid29685496">{{Cite journal |vauthors=Grimley E, Dressler GR |year=2018 |title=Are Pax proteins potential therapeutic targets in kidney disease and cancer? |journal=Kidney International |volume=94 |issue=2 |pages=259β267 |doi=10.1016/j.kint.2018.01.025 |pmc=6054895 |pmid=29685496}}</ref> and the [[notch signaling pathway|notch]] pathway.<ref name="pmid19907488">{{Cite journal |vauthors=Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE |date=November 2009 |title=Direct inhibition of the NOTCH transcription factor complex |journal=Nature |volume=462 |issue=7270 |pages=182β8 |bibcode=2009Natur.462..182M |doi=10.1038/nature08543 |pmc=2951323 |pmid=19907488}} * {{lay source |template=cite magazine |author=Katherine Bagley |date=11 November 2009 |title=New drug target for cancer |url=http://www.the-scientist.com/blog/display/56143/ |archive-url=https://web.archive.org/web/20091116103443/http://www.the-scientist.com/blog/display/56143/ |archive-date=16 November 2009 |magazine=The Scientist}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Transcription factor
(section)
Add topic