Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Taylor series
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Taylor series in several variables{{anchor|In several variables}}== The Taylor series may also be generalized to functions of more than one variable with<ref>{{multiref|{{harvnb|Hörmander|2002|loc=See Eqq. 1.1.7 and 1.1.7′}} |{{harvnb|Kolk|Duistermaat|2010|p=59–63}} }}</ref> <math display="block">\begin{align} T(x_1,\ldots,x_d) &= \sum_{n_1=0}^\infty \cdots \sum_{n_d = 0}^\infty \frac{(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d}}{n_1!\cdots n_d!}\,\left(\frac{\partial^{n_1 + \cdots + n_d}f}{\partial x_1^{n_1}\cdots \partial x_d^{n_d}}\right)(a_1,\ldots,a_d) \\ &= f(a_1, \ldots,a_d) + \sum_{j=1}^d \frac{\partial f(a_1, \ldots,a_d)}{\partial x_j} (x_j - a_j) + \frac{1}{2!} \sum_{j=1}^d \sum_{k=1}^d \frac{\partial^2 f(a_1, \ldots,a_d)}{\partial x_j \partial x_k} (x_j - a_j)(x_k - a_k) \\ & \qquad \qquad + \frac{1}{3!} \sum_{j=1}^d\sum_{k=1}^d\sum_{l=1}^d \frac{\partial^3 f(a_1, \ldots,a_d)}{\partial x_j \partial x_k \partial x_l} (x_j - a_j)(x_k - a_k)(x_l - a_l) + \cdots \end{align}</math> For example, for a function <math>f(x,y)</math> that depends on two variables, {{mvar|x}} and {{mvar|y}}, the Taylor series to second order about the point {{math|(''a'', ''b'')}} is <math display="block">f(a,b) +(x-a) f_x(a,b) +(y-b) f_y(a,b) + \frac{1}{2!}\Big( (x-a)^2 f_{xx}(a,b) + 2(x-a)(y-b) f_{xy}(a,b) +(y-b)^2 f_{yy}(a,b) \Big)</math> where the subscripts denote the respective [[partial derivative]]s. ===Second-order Taylor series in several variables=== {{see also|Linearization#Multivariable functions}} A second-order Taylor series expansion of a scalar-valued function of more than one variable can be written compactly as <math display="block">T(\mathbf{x}) = f(\mathbf{a}) + (\mathbf{x} - \mathbf{a})^\mathsf{T} D f(\mathbf{a}) + \frac{1}{2!} (\mathbf{x} - \mathbf{a})^\mathsf{T} \left \{D^2 f(\mathbf{a}) \right \} (\mathbf{x} - \mathbf{a}) + \cdots,</math> where {{math|''D'' ''f'' ('''a''')}} is the [[gradient]] of {{mvar|f}} evaluated at {{math|'''x''' {{=}} '''a'''}} and {{math|''D''<sup>2</sup> ''f'' ('''a''')}} is the [[Hessian matrix]]. Applying the [[multi-index notation]] the Taylor series for several variables becomes <math display="block">T(\mathbf{x}) = \sum_{|\alpha| \geq 0}\frac{(\mathbf{x}-\mathbf{a})^\alpha}{\alpha !} \left({\mathrm{\partial}^{\alpha}}f\right)(\mathbf{a}),</math> which is to be understood as a still more abbreviated [[multi-index]] version of the first equation of this paragraph, with a full analogy to the single variable case. === Example === [[Image:Second Order Taylor.svg|200px|thumb|right|Second-order Taylor series approximation (in orange) of a function {{math|''f'' (''x'',''y'') {{=}} ''e<sup>x</sup>'' ln(1 + ''y'')}} around the origin.]] In order to compute a second-order Taylor series expansion around point {{math|(''a'', ''b'') {{=}} (0, 0)}} of the function <math display="block">f(x,y)=e^x\ln(1+y),</math> one first computes all the necessary partial derivatives: <math display="block">\begin{align} f_x &= e^x\ln(1+y) \\[6pt] f_y &= \frac{e^x}{1+y} \\[6pt] f_{xx} &= e^x\ln(1+y) \\[6pt] f_{yy} &= - \frac{e^x}{(1+y)^2} \\[6pt] f_{xy} &=f_{yx} = \frac{e^x}{1+y} . \end{align}</math> Evaluating these derivatives at the origin gives the Taylor coefficients <math display="block">\begin{align} f_x(0,0) &= 0 \\ f_y(0,0) &=1 \\ f_{xx}(0,0) &=0 \\ f_{yy}(0,0) &=-1 \\ f_{xy}(0,0) &=f_{yx}(0,0)=1. \end{align}</math> Substituting these values in to the general formula <math display="block">\begin{align} T(x,y) = &f(a,b) +(x-a) f_x(a,b) +(y-b) f_y(a,b) \\ &{}+\frac{1}{2!}\left( (x-a)^2f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b) +(y-b)^2 f_{yy}(a,b) \right)+ \cdots \end{align}</math> produces <math display="block">\begin{align} T(x,y) &= 0 + 0(x-0) + 1(y-0) + \frac{1}{2}\big( 0(x-0)^2 + 2(x-0)(y-0) + (-1)(y-0)^2 \big) + \cdots \\ &= y + xy - \tfrac12 y^2 + \cdots \end{align}</math> Since {{math|ln(1 + ''y'')}} is analytic in {{math|{{abs|''y''}} < 1}}, we have <math display="block">e^x\ln(1+y)= y + xy - \tfrac12 y^2 + \cdots, \qquad |y| < 1.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Taylor series
(section)
Add topic