Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Refractive index
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bandgap === [[File:Annotated Eg vs n.png|thumb|A scatter plot of bandgap energy versus optical refractive index for many common IV, III-V, and II-VI semiconducting elements / compounds. ]] The optical refractive index of a semiconductor tends to increase as the [[Band gap|bandgap energy]] decreases. Many attempts<ref>{{Cite journal |last1=Gomaa |first1=Hosam M. |last2=Yahia |first2=I. S. |last3=Zahran |first3=H. Y. |date=2021-11-01 |title=Correlation between the static refractive index and the optical bandgap: Review and new empirical approach |url=https://www.sciencedirect.com/science/article/abs/pii/S0921452621004208 |journal=Physica B: Condensed Matter |volume=620 |pages=413246 |doi=10.1016/j.physb.2021.413246 |bibcode=2021PhyB..62013246G |issn=0921-4526}}</ref> have been made to model this relationship beginning with T. S. Moses in 1949.<ref>{{Cite journal |last=Moss |first=T S |date=1950-03-01 |title=A Relationship between the Refractive Index and the Infra-Red Threshold of Sensitivity for Photoconductors |url= |journal=Proceedings of the Physical Society. Section B |volume=63 |issue=3 |pages=167β176 |doi=10.1088/0370-1301/63/3/302 |bibcode=1950PPSB...63..167M |issn=0370-1301}}</ref> Empirical models can match experimental data over a wide range of materials and yet fail for important cases like InSb, PbS, and Ge.<ref>{{Cite book |last=Moss |first=T. S. |title=October 1 |chapter-url=https://www.degruyter.com/document/doi/10.1515/9783112495384-003/html |chapter=Relations between the Refractive Index and Energy Gap oi Semiconductors |date=1985-12-31 |publisher=De Gruyter |isbn=978-3-11-249538-4 |pages=415β428 |doi=10.1515/9783112495384-003}}</ref> This negative correlation between refractive index and bandgap energy, along with a negative correlation between bandgap and temperature, means that many semiconductors exhibit a positive correlation between refractive index and temperature.<ref>{{Cite journal |last1=Bertolotti |first1=Mario |last2=Bogdanov |first2=Victor |last3=Ferrari |first3=Aldo |last4=Jascow |first4=Andrei |last5=Nazorova |first5=Natalia |last6=Pikhtin |first6=Alexander |last7=Schirone |first7=Luigi |date=1990-06-01 |title=Temperature dependence of the refractive index in semiconductors |url=https://opg.optica.org/josab/abstract.cfm?uri=josab-7-6-918 |journal=JOSA B |language=EN |volume=7 |issue=6 |pages=918β922 |doi=10.1364/JOSAB.7.000918 |bibcode=1990JOSAB...7..918B |issn=1520-8540}}</ref> This is the opposite of most materials, where the refractive index decreases with temperature as a result of a decreasing material density.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Refractive index
(section)
Add topic