Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Orbital mechanics
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Perturbations=== The universal variable formulation works well with the variation of parameters technique, except now, instead of the six Keplerian orbital elements, we use a different set of orbital elements: namely, the satellite's initial position and velocity vectors <math>x_0</math> and <math>v_0</math> at a given epoch <math>t = 0</math>. In a two-body simulation, these elements are sufficient to compute the satellite's position and velocity at any time in the future, using the universal variable formulation. Conversely, at any moment in the satellite's orbit, we can measure its position and velocity, and then use the universal variable approach to determine what its initial position and velocity ''would have been'' at the epoch. In perfect two-body motion, these orbital elements would be invariant (just like the Keplerian elements would be). However, perturbations cause the orbital elements to change over time. Hence, the position element is written as <math>x_0(t)</math> and the velocity element as <math>v_0(t)</math>, indicating that they vary with time. The technique to compute the effect of perturbations becomes one of finding expressions, either exact or approximate, for the functions <math>x_0(t)</math> and <math>v_0(t)</math>.<!-- TODO: Explain it more --> The following are some effects which make real orbits differ from the simple models based on a spherical Earth. Most of them can be handled on short timescales (perhaps less than a few thousand orbits) by perturbation theory because they are small relative to the corresponding two-body effects. *Equatorial bulges cause [[precession]] of the node and the perigee *[[Spherical harmonics#Visualization of the spherical harmonics|Tesseral harmonic]]s<ref>{{MathWorld |title=Tesseral Harmonic |id=TesseralHarmonic |access-date=2019-10-07}}</ref> of the gravity field introduce additional perturbations *Lunar and solar gravity perturbations alter the orbits *Atmospheric drag reduces the semi-major axis unless make-up thrust is used Over very long timescales (perhaps millions of orbits), even small perturbations can dominate, and the behavior can become [[Chaos theory|chaotic]]. On the other hand, the various perturbations can be orchestrated by clever astrodynamicists to assist with orbit maintenance tasks, such as [[Orbital station-keeping|station-keeping]], [[ground track]] maintenance or adjustment, or phasing of perigee to cover selected targets at low altitude.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Orbital mechanics
(section)
Add topic