Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Monotone convergence theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proof of theorem== Set <math> f = \sup_k f_k</math>. Denote by <math>\operatorname{SF}(f)</math> the set of simple <math>(\Sigma,\operatorname{\mathcal B}_{\R_{\geq 0}})</math>-measurable functions <math>s:X\to [0,\infty)</math> such that <math>0\leq s\leq f</math> on <math>X</math>. '''Step 1.''' The function <math>f</math> is <math> (\Sigma, \operatorname{\mathcal B}_{\bar\R_{\geq 0}}) </math>–measurable, and the integral <math>\textstyle \int_X f \,d\mu </math> is well-defined (albeit possibly infinite)<ref name="SCHECHTER1997"/>{{rp|at=section 21.3}} From <math>0 \le f_k(x) \le \infty</math> we get <math>0 \le f(x) \le \infty</math>. Hence we have to show that <math>f</math> is <math>(\Sigma,\operatorname{\mathcal B}_{\bar\R_{\geq 0}})</math>-measurable. To see this, it suffices to prove that <math>f^{-1}([0,t])</math> is <math>\Sigma </math>-measurable for all <math>0 \le t \le \infty</math>, because the intervals <math>[0,t]</math> generate the [[Borel sigma algebra]] on the extended non negative reals <math>[0,\infty]</math> by complementing and taking countable intersections, complements and countable unions. Now since the <math>f_k(x)</math> is a non decreasing sequence, <math> f(x) = \sup_k f_k(x) \leq t</math> if and only if <math>f_k(x)\leq t</math> for all <math>k</math>. Since we already know that <math>f\ge 0</math> and <math>f_k\ge 0</math> we conclude that :<math>f^{-1}([0, t]) = \bigcap_k f_k^{-1}([0,t]).</math> Hence <math>f^{-1}([0, t])</math> is a measurable set, being the countable intersection of the measurable sets <math>f_k^{-1}([0,t])</math>. Since <math>f \ge 0</math> the integral is well defined (but possibly infinite) as :<math> \int_X f \,d\mu = \sup_{s \in SF(f)}\int_X s \, d\mu</math>. '''Step 2.''' We have the inequality :<math>\sup_k \int_X f_k \,d\mu \le \int_X f \,d\mu </math> This is equivalent to <math>\int_X f_k(x) \, d\mu \le \int_X f(x)\, d\mu</math> for all <math>k</math> which follows directly from <math>f_k(x) \le f(x)</math> and "monotonicity of the integral" (lemma 1). '''step 3''' We have the reverse inequality :<math> \int_X f \,d\mu \le \sup_k \int_X f_k \,d\mu </math>. By the definition of integral as a supremum step 3 is equivalent to :<math> \int_X s\,d\mu\leq\sup_k\int_X f_k\,d\mu</math> for every <math>s\in\operatorname{SF}(f)</math>. It is tempting to prove <math> \int_X s\,d\mu\leq \int_X f_k \,d\mu</math> for <math>k >K_s </math> sufficiently large, but this does not work e.g. if <math> f </math> is itself simple and the <math>f_k < f</math>. However, we can get ourself an "epsilon of room" to manoeuvre and avoid this problem. Step 3 is also equivalent to :<math> (1-\varepsilon) \int_X s \, d\mu = \int_X (1 - \varepsilon) s \, d\mu \le \sup_k \int_X f_k \, d\mu </math> for every simple function <math>s\in\operatorname{SF}(f)</math> and every <math>0 <\varepsilon \ll 1</math> where for the equality we used that the left hand side of the inequality is a finite sum. This we will prove. Given <math>s\in\operatorname{SF}(f)</math> and <math>0 <\varepsilon \ll 1</math>, define :<math>B^{s,\varepsilon}_k=\{x\in X\mid (1 - \varepsilon) s(x)\leq f_k(x)\}\subseteq X.</math> We '''claim''' the sets <math>B^{s,\varepsilon}_k</math> have the following properties: #<math>B^{s,\varepsilon}_k</math> is <math>\Sigma</math>-measurable. # <math>B^{s,\varepsilon}_k\subseteq B^{s,\varepsilon}_{k+1}</math> #<math> X=\bigcup_k B^{s,\varepsilon}_k</math> Assuming the claim, by the definition of <math>B^{s,\varepsilon}_k</math> and "monotonicity of the Lebesgue integral" (lemma 1) we have :<math>\int_{B^{s,\varepsilon}_k}(1-\varepsilon) s\,d\mu\leq\int_{B^{s,\varepsilon}_k} f_k\,d\mu \leq\int_X f_k\,d\mu. </math> Hence by "Lebesgue integral of a simple function as measure" (lemma 2), and "continuity from below" (lemma 3) we get: :<math> \sup_k \int_{B^{s,\varepsilon}_k} (1-\varepsilon)s\,d\mu = \int_X (1- \varepsilon)s \, d\mu \le \sup_k \int_X f_k \, d\mu. </math> which we set out to prove. Thus it remains to prove the claim. Ad 1: Write <math>s=\sum_{1 \le i \le m}c_i\cdot{\mathbf 1}_{A_i}</math>, for non-negative constants <math>c_i \in \R_{\geq 0}</math>, and measurable sets <math>A_i\in\Sigma</math>, which we may assume are pairwise disjoint and with union <math>\textstyle X=\coprod^m_{i=1}A_i</math>. Then for <math> x\in A_i</math> we have <math>(1-\varepsilon)s(x)\leq f_k(x)</math> if and only if <math> f_k(x) \in [( 1- \varepsilon)c_i, \,\infty],</math> so :<math>B^{s,\varepsilon}_k=\coprod^m_{i=1}\Bigl(f^{-1}_k\Bigl([(1-\varepsilon)c_i,\infty]\Bigr)\cap A_i\Bigr)</math> which is measurable since the <math>f_k</math> are measurable. Ad 2: For <math> x \in B^{s,\varepsilon}_k</math> we have <math>(1 - \varepsilon)s(x) \le f_k(x)\le f_{k+1}(x)</math> so <math>x \in B^{s,\varepsilon}_{k + 1}.</math> Ad 3: Fix <math>x \in X</math>. If <math>s(x) = 0</math> then <math>(1 - \varepsilon)s(x) = 0 \le f_1(x)</math>, hence <math>x \in B^{s,\varepsilon}_1</math>. Otherwise, <math>s(x) > 0</math> and <math>(1-\varepsilon)s(x) < s(x) \le f(x) = \sup_k f(x)</math> so <math>(1- \varepsilon)s(x) < f_{N_x}(x)</math> for <math>N_x</math> sufficiently large, hence <math>x \in B^{s,\varepsilon}_{N_x}</math>. The proof of the monotone convergence theorem is complete. ===Relaxing the monotonicity assumption=== Under similar hypotheses to Beppo Levi's theorem, it is possible to relax the hypothesis of monotonicity.<ref>coudy (https://mathoverflow.net/users/6129/coudy), Do you know important theorems that remain unknown?, URL (version: 2018-06-05): https://mathoverflow.net/q/296540</ref> As before, let <math>(\Omega, \Sigma, \mu)</math> be a [[measure (mathematics)|measure space]] and <math>X \in \Sigma</math>. Again, <math>\{f_k\}_{k=1}^\infty</math> will be a sequence of <math>(\Sigma, \mathcal{B}_{\R_{\geq 0}})</math>-[[Measurable function|measurable]] non-negative functions <math>f_k:X\to [0,+\infty]</math>. However, we do not assume they are pointwise non-decreasing. Instead, we assume that <math display="inline">\{f_k(x)\}_{k=1}^\infty</math> converges for almost every <math>x</math>, we define <math>f</math> to be the pointwise limit of <math>\{f_k\}_{k=1}^\infty</math>, and we assume additionally that <math>f_k \le f</math> pointwise almost everywhere for all <math>k</math>. Then <math>f</math> is <math>(\Sigma, \mathcal{B}_{\R_{\geq 0}})</math>-measurable, and <math display="inline">\lim_{k\to\infty} \int_X f_k \,d\mu</math> exists, and <math display="block">\lim_{k\to\infty} \int_X f_k \,d\mu = \int_X f \,d\mu.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Monotone convergence theorem
(section)
Add topic