Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Integration by parts
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Higher dimensions== Integration by parts can be extended to functions of several variables by applying a version of the fundamental theorem of calculus to an appropriate product rule. There are several such pairings possible in multivariate calculus, involving a scalar-valued function ''u'' and vector-valued function (vector field) '''V'''.<ref>{{Cite web|url=http://www.math.nagoya-u.ac.jp/~richard/teaching/s2016/Ref2.pdf|title=The Calculus of Several Variables| last=Rogers| first=Robert C. |date=September 29, 2011}}</ref> The [[Vector calculus identities#First derivative identities|product rule for divergence]] states: <math display="block">\nabla \cdot ( u \mathbf{V} ) \ =\ u\, \nabla \cdot \mathbf V \ +\ \nabla u\cdot \mathbf V.</math> Suppose <math>\Omega</math> is an [[Open set|open]] [[bounded set|bounded subset]] of <math>\R^n</math> with a [[piecewise smooth]] [[boundary (topology)|boundary]] <math>\Gamma=\partial\Omega</math>. Integrating over <math>\Omega</math> with respect to the standard volume form <math>d\Omega</math>, and applying the [[divergence theorem]], gives: <math display="block">\int_{\Gamma} u \mathbf{V} \cdot \hat{\mathbf n} \,d\Gamma \ =\ \int_\Omega\nabla\cdot ( u \mathbf{V} )\,d\Omega \ =\ \int_\Omega u\, \nabla \cdot \mathbf V\,d\Omega \ +\ \int_\Omega\nabla u\cdot \mathbf V\,d\Omega,</math> where <math>\hat{\mathbf n}</math> is the outward unit normal vector to the boundary, integrated with respect to its standard Riemannian volume form <math>d\Gamma</math>. Rearranging gives: <math display="block"> \int_\Omega u \,\nabla \cdot \mathbf V\,d\Omega \ =\ \int_\Gamma u \mathbf V \cdot \hat{\mathbf n}\,d\Gamma - \int_\Omega \nabla u \cdot \mathbf V \, d\Omega, </math> or in other words <math display="block"> \int_\Omega u\,\operatorname{div}(\mathbf V)\,d\Omega \ =\ \int_\Gamma u \mathbf V \cdot \hat{\mathbf n}\,d\Gamma - \int_\Omega \operatorname{grad}(u)\cdot\mathbf V\,d\Omega . </math> The [[Differentiability class|regularity]] requirements of the theorem can be relaxed. For instance, the boundary <math> \Gamma=\partial\Omega</math> need only be [[Lipschitz continuous]], and the functions ''u'', ''v'' need only lie in the [[Sobolev space]] <math>H^1(\Omega)</math>. === Green's first identity === Consider the continuously differentiable vector fields <math>\mathbf U = u_1\mathbf e_1+\cdots+u_n\mathbf e_n</math> and <math>v \mathbf e_1,\ldots, v\mathbf e_n</math>, where <math>\mathbf e_i</math> is the ''i''-th standard basis vector for <math>i=1,\ldots,n</math>. Now apply the above integration by parts to each <math>u_i</math> times the vector field <math>v\mathbf e_i</math>: <math display="block">\int_\Omega u_i\frac{\partial v}{\partial x_i}\,d\Omega \ =\ \int_\Gamma u_i v \,\mathbf e_i\cdot\hat\mathbf{n}\,d\Gamma - \int_\Omega \frac{\partial u_i}{\partial x_i} v\,d\Omega.</math> Summing over ''i'' gives a new integration by parts formula: <math display="block"> \int_\Omega \mathbf U \cdot \nabla v\,d\Omega \ =\ \int_\Gamma v \mathbf{U}\cdot \hat{\mathbf n}\,d\Gamma - \int_\Omega v\, \nabla \cdot \mathbf{U}\,d\Omega.</math> The case <math>\mathbf{U}=\nabla u</math>, where <math>u\in C^2(\bar{\Omega})</math>, is known as the first of [[Green's identities]]: <math display="block"> \int_\Omega \nabla u \cdot \nabla v\,d\Omega\ =\ \int_\Gamma v\, \nabla u\cdot\hat{\mathbf n}\,d\Gamma - \int_\Omega v\, \nabla^2 u \, d\Omega.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Integration by parts
(section)
Add topic