Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euclidean vector
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Scalar triple product=== {{main|Triple product#Scalar triple product|l1=Scalar triple product}} The ''scalar triple product'' (also called the ''box product'' or ''mixed triple product'') is not really a new operator, but a way of applying the other two multiplication operators to three vectors. The scalar triple product is sometimes denoted by ('''a''' '''b''' '''c''') and defined as: <math display=block>(\mathbf{a}\ \mathbf{b}\ \mathbf{c}) =\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c}).</math> It has three primary uses. First, the absolute value of the box product is the volume of the [[parallelepiped]] which has edges that are defined by the three vectors. Second, the scalar triple product is zero if and only if the three vectors are [[linear independence|linearly dependent]], which can be easily proved by considering that in order for the three vectors to not make a volume, they must all lie in the same plane. Third, the box product is positive if and only if the three vectors '''a''', '''b''' and '''c''' are right-handed. In components (''with respect to a right-handed orthonormal basis''), if the three vectors are thought of as rows (or columns, but in the same order), the scalar triple product is simply the [[determinant]] of the 3-by-3 [[Matrix (mathematics)|matrix]] having the three vectors as rows <math display=block>(\mathbf{a}\ \mathbf{b}\ \mathbf{c})=\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}</math> The scalar triple product is linear in all three entries and anti-symmetric in the following sense: <math display=block> (\mathbf{a}\ \mathbf{b}\ \mathbf{c}) = (\mathbf{c}\ \mathbf{a}\ \mathbf{b}) = (\mathbf{b}\ \mathbf{c}\ \mathbf{a})= -(\mathbf{a}\ \mathbf{c}\ \mathbf{b}) = -(\mathbf{b}\ \mathbf{a}\ \mathbf{c}) = -(\mathbf{c}\ \mathbf{b}\ \mathbf{a}).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euclidean vector
(section)
Add topic