Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dynamical system
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bifurcation theory== {{Main|Bifurcation theory}} When the evolution map Φ<sup>''t''</sup> (or the [[vector field]] it is derived from) depends on a parameter μ, the structure of the phase space will also depend on this parameter. Small changes may produce no qualitative changes in the [[phase space]] until a special value ''μ''<sub>0</sub> is reached. At this point the phase space changes qualitatively and the dynamical system is said to have gone through a bifurcation. Bifurcation theory considers a structure in phase space (typically a [[Fixed point (mathematics)|fixed point]], a periodic orbit, or an invariant [[torus]]) and studies its behavior as a function of the parameter ''μ''. At the bifurcation point the structure may change its stability, split into new structures, or merge with other structures. By using Taylor series approximations of the maps and an understanding of the differences that may be eliminated by a change of coordinates, it is possible to catalog the bifurcations of dynamical systems. The bifurcations of a hyperbolic fixed point ''x''<sub>0</sub> of a system family ''F<sub>μ</sub>'' can be characterized by the [[eigenvalues]] of the first derivative of the system ''DF''<sub>''μ''</sub>(''x''<sub>0</sub>) computed at the bifurcation point. For a map, the bifurcation will occur when there are eigenvalues of ''DF<sub>μ</sub>'' on the unit circle. For a flow, it will occur when there are eigenvalues on the imaginary axis. For more information, see the main article on [[Bifurcation theory]]. Some bifurcations can lead to very complicated structures in phase space. For example, the [[Ruelle–Takens scenario]] describes how a periodic orbit bifurcates into a torus and the torus into a [[strange attractor]]. In another example, [[Bifurcation diagram|Feigenbaum period-doubling]] describes how a stable periodic orbit goes through a series of [[period-doubling bifurcation]]s.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dynamical system
(section)
Add topic