Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cross product
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cross visualization === Similarly to the mnemonic device above, a "cross" or X can be visualized between the two vectors in the equation. This may be helpful for remembering the correct cross product formula. If :<math>\mathbf{a} = \mathbf{b} \times \mathbf{c}</math> then: :<math> \mathbf{a} = \begin{bmatrix}b_x\\b_y\\b_z\end{bmatrix} \times \begin{bmatrix}c_x\\c_y\\c_z\end{bmatrix}. </math> If we want to obtain the formula for <math>a_x</math> we simply drop the <math>b_x</math> and <math>c_x</math> from the formula, and take the next two components down: :<math> a_x = \begin{bmatrix}b_y\\b_z\end{bmatrix} \times \begin{bmatrix}c_y\\c_z\end{bmatrix}. </math> When doing this for <math>a_y</math> the next two elements down should "wrap around" the matrix so that after the z component comes the x component. For clarity, when performing this operation for <math>a_y</math>, the next two components should be z and x (in that order). While for <math>a_z</math> the next two components should be taken as x and y. :<math> a_y = \begin{bmatrix}b_z\\b_x\end{bmatrix} \times \begin{bmatrix}c_z\\c_x\end{bmatrix},\ a_z = \begin{bmatrix}b_x\\b_y\end{bmatrix} \times \begin{bmatrix}c_x\\c_y\end{bmatrix} </math> For <math>a_x</math> then, if we visualize the cross operator as pointing from an element on the left to an element on the right, we can take the first element on the left and simply multiply by the element that the cross points to in the right-hand matrix. We then subtract the next element down on the left, multiplied by the element that the cross points to here as well. This results in our <math>a_x</math> formula β :<math>a_x = b_y c_z - b_z c_y.</math> We can do this in the same way for <math>a_y</math> and <math>a_z</math> to construct their associated formulas.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cross product
(section)
Add topic