Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Composite material
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Stiffness and Compliance Elasticity === Composite materials are generally [[anisotropic]], and in many cases are [[Orthotropic material|orthotropic]]. [[Voigt notation]] can be used to reduce the rank of the stress and strain tensors such that the [[stiffness]] <math>C</math> (often also referred to by <math>Q</math>) and compliance <math>S</math> can be written as a [[Matrix (mathematics)|matrix]]:<ref>{{cite book |last1=Lekhnit͡skiĭ |first1=Sergeĭ Georgievich |title=Theory of Elasticity of an Anisotropic Elastic Body |date=1963 |publisher=Holden-Day |oclc=652279972 }}{{pn|date=January 2025}}</ref> <math>\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix}</math> and <math>\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{12} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{13} & S_{23} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{14} & S_{24} & S_{34} & S_{44} & S_{45} & S_{46} \\ S_{15} & S_{25} & S_{35} & S_{45} & S_{55} & S_{56} \\ S_{16} & S_{26} & S_{36} & S_{46} & S_{56} & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix}</math> When considering each ply individually, it is assumed that they can be treated as thi lamina and so out–of–plane stresses and strains are negligible. That is <math>\sigma_3 = \sigma_4 = \sigma_5 = 0</math> and <math>\varepsilon_4 = \varepsilon_5 = 0</math>.<ref name=":0">{{cite book |doi=10.1007/978-94-011-4489-6 |title=Mechanics of Composite Materials and Structures |date=1999 |isbn=978-0-7923-5871-8 |editor-last1=Soares |editor-last2=Soares |editor-last3=Freitas |editor-first1=Carlos A. Mota |editor-first2=Cristóvão M. Mota |editor-first3=Manuel J. M. }}</ref> This allows the stiffness and compliance matrices to be reduced to 3x3 matrices as follows: <math>C = \begin{bmatrix} \tfrac{E_{\rm 1}}{1-{\nu_{\rm 12}}{\nu_{\rm 21}}} & \tfrac{E_{\rm 2}{\nu_{\rm 12}}}{1-{\nu_{\rm 12}}{\nu_{\rm 21}}} & 0 \\ \tfrac{E_{\rm 2}{\nu_{\rm 12}}}{1-{\nu_{\rm 12}}{\nu_{\rm 21}}} & \tfrac{E_{\rm 2}}{1-{\nu_{\rm 12}}{\nu_{\rm 21}}} & 0 \\ 0 & 0 & G_{\rm 12} \\ \end{bmatrix} \quad </math> and <math> \quad S = \begin{bmatrix} \tfrac{1}{E_{\rm 1}} & - \tfrac{\nu_{\rm 21}}{E_{\rm 2}} & 0 \\ -\tfrac{\nu_{\rm 12}}{E_{\rm 1}} & \tfrac{1}{E_{\rm 2}} & 0 \\ 0 & 0 & \tfrac{1}{G_{\rm 12}} \\ \end{bmatrix} </math> [[File:Transform coordinate system.png|thumb|331x331px|Two different coordinate systems of material. The structure has a (1-2) coordinate system. The material has a (x-y) principal coordinate system.]] For fiber-reinforced composite, the fiber orientation in material affect anisotropic properties of the structure. From characterizing technique i.e. tensile testing, the material properties were measured based on sample (1-2) coordinate system. The tensors above express stress-strain relationship in (1-2) coordinate system. While the known material properties is in the principal coordinate system (x-y) of material. Transforming the tensor between two coordinate system help identify the material properties of the tested sample. The [[transformation matrix]] with <math>\theta </math> degree rotation is <ref name=":0" /> <math>T(\theta)_\epsilon = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & \cos \theta\sin \theta \\ sin^2 \theta & \cos^2 \theta & -\cos \theta\sin \theta \\ -2\cos \theta\sin \theta & 2\cos \theta\sin \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix} </math> for <math>\begin{bmatrix} \acute{\epsilon} \end{bmatrix} = T(\theta)_\epsilon \begin{bmatrix} \epsilon \end{bmatrix} </math><math>T(\theta)_\sigma = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & 2\cos \theta\sin \theta \\ sin^2 \theta & \cos^2 \theta & -2\cos \theta\sin \theta \\ -\cos \theta\sin \theta & \cos \theta\sin \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix} </math> for <math>\begin{bmatrix} \acute{\sigma} \end{bmatrix} = T(\theta)_\sigma \begin{bmatrix} \sigma \end{bmatrix} </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Composite material
(section)
Add topic