Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bose–Einstein condensate
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Attractive interactions === Experiments led by Randall Hulet at Rice University from 1995 through 2000 showed that lithium condensates with attractive interactions could stably exist up to a critical atom number. Quench cooling the gas, they observed the condensate to grow, then subsequently collapse as the attraction overwhelmed the zero-point energy of the confining potential, in a burst reminiscent of a supernova, with an explosion preceded by an implosion. Further work on attractive condensates was performed in 2000 by the [[JILA]] team, of Cornell, Wieman and coworkers. Their instrumentation now had better control so they used naturally ''attracting'' atoms of rubidium-85 (having negative atom–atom [[scattering length]]). Through [[Feshbach resonance]] involving a sweep of the magnetic field causing spin flip collisions, they lowered the characteristic, discrete energies at which rubidium bonds, making their Rb-85 atoms repulsive and creating a stable condensate. The reversible flip from attraction to repulsion stems from quantum [[Interference (wave propagation)|interference]] among wave-like condensate atoms. When the JILA team raised the magnetic field strength further, the condensate suddenly reverted to attraction, imploded and shrank beyond detection, then exploded, expelling about two-thirds of its 10,000 atoms. About half of the atoms in the condensate seemed to have disappeared from the experiment altogether, not seen in the cold remnant or expanding gas cloud.<ref name=nobel/> [[Carl Wieman]] explained that under current atomic theory this characteristic of Bose–Einstein condensate could not be explained because the energy state of an atom near absolute zero should not be enough to cause an implosion; however, subsequent mean-field theories have been proposed to explain it. Most likely they formed molecules of two rubidium atoms;<ref name=vanPutten:2010/> energy gained by this bond imparts velocity sufficient to leave the trap without being detected. The process of creation of molecular Bose condensate during the sweep of the magnetic field throughout the Feshbach resonance, as well as the reverse process, are described by the exactly solvable model that can explain many experimental observations.<ref name="sun-16pra2">{{cite journal|doi=10.1103/PhysRevA.94.033808|title=Landau-Zener extension of the Tavis-Cummings model: Structure of the solution|author1=C. Sun|author2=N. A. Sinitsyn |journal=[[Phys. Rev. A]]|volume=94|issue=3|year=2016|pages=033808|bibcode=2016PhRvA..94c3808S|arxiv=1606.08430|s2cid=119317114}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bose–Einstein condensate
(section)
Add topic