Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bernoulli number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Connection with Stirling numbers of the first kind === The two main formulas relating the unsigned [[Stirling numbers of the first kind]] {{math|<big><big>[</big></big>{{su|p=''n''|b=''m''|a=c}}<big><big>]</big></big>}} to the Bernoulli numbers (with {{math|''B''<sub>1</sub> {{=}} +{{sfrac|1|2}}}}) are : <math> \frac{1}{m!}\sum_{k=0}^m (-1)^{k} \left[{m+1\atop k+1}\right] B_k = \frac{1}{m+1}, </math> and the inversion of this sum (for {{math|''n'' ≥ 0}}, {{math|''m'' ≥ 0}}) : <math> \frac{1}{m!}\sum_{k=0}^m (-1)^k \left[{m+1\atop k+1}\right] B_{n+k} = A_{n,m}. </math> Here the number {{math|''A''<sub>''n'',''m''</sub>}} are the rational Akiyama–Tanigawa numbers, the first few of which are displayed in the following table. :{| class="wikitable" style="text-align:center" |+ Akiyama–Tanigawa number ! {{diagonal split header|{{mvar|n}}|{{mvar|m}}}}!!0!!1!!2!!3!!4 |- ! 0 | 1 || {{sfrac|1|2}} || {{sfrac|1|3}} || {{sfrac|1|4}} || {{sfrac|1|5}} |- ! 1 | {{sfrac|1|2}} || {{sfrac|1|3}} || {{sfrac|1|4}} || {{sfrac|1|5}} || ... |- ! 2 | {{sfrac|1|6}} || {{sfrac|1|6}} || {{sfrac|3|20}} || ... || ... |- ! 3 | 0 || {{sfrac|1|30}} || ... || ... || ... |- ! 4 | −{{sfrac|1|30}} || ... || ... || ... || ... |} The Akiyama–Tanigawa numbers satisfy a simple recurrence relation which can be exploited to iteratively compute the Bernoulli numbers. This leads to the algorithm shown in the section 'algorithmic description' above. See {{OEIS2C|id=A051714}}/{{OEIS2C|id=A051715}}. An ''autosequence'' is a sequence which has its inverse binomial transform equal to the signed sequence. If the main diagonal is zeroes = {{OEIS2C|id=A000004}}, the autosequence is of the first kind. Example: {{OEIS2C|id=A000045}}, the Fibonacci numbers. If the main diagonal is the first upper diagonal multiplied by 2, it is of the second kind. Example: {{OEIS2C|id=A164555}}/{{OEIS2C|id=A027642}}, the second Bernoulli numbers (see {{OEIS2C|id=A190339}}). The Akiyama–Tanigawa transform applied to {{math|''2''<sup>−''n''</sup>}} = 1/{{OEIS2C|id=A000079}} leads to {{OEIS2C|id=A198631}} (''n'') / {{OEIS2C|id=A06519}} (''n'' + 1). Hence: :{| class="wikitable" style="text-align:center" |+ Akiyama–Tanigawa transform for the second Euler numbers |- ! {{diagonal split header|{{mvar|n}}|{{mvar|m}}}} !! 0 !! 1 !! 2 !! 3 !! 4 |- ! 0 | 1 || {{sfrac|1|2}} || {{sfrac|1|4}} || {{sfrac|1|8}} || {{sfrac|1|16}} |- ! 1 | {{sfrac|1|2}} || {{sfrac|1|2}} || {{sfrac|3|8}} || {{sfrac|1|4}} || ... |- ! 2 | 0 || {{sfrac|1|4}} || {{sfrac|3|8}} || ... || ... |- ! 3 | −{{sfrac|1|4}} || −{{sfrac|1|4}} || ... || ... || ... |- ! 4 | 0 || ... || ... || ... || ... |} See {{OEIS2C|id=A209308}} and {{OEIS2C|id=A227577}}. {{OEIS2C|id=A198631}} ({{math|''n''}}) / {{OEIS2C|id=A006519}} ({{math|''n'' + 1}}) are the second (fractional) Euler numbers and an autosequence of the second kind. :({{sfrac|{{OEIS2C|id=A164555}} ({{math|''n'' + 2}})|{{OEIS2C|id=A027642}} ({{math|''n'' + 2}})}} = {{math|{{sfrac|1|6}}, 0, −{{sfrac|1|30}}, 0, {{sfrac|1|42}}, ...}}) × ( {{math|{{sfrac|2<sup>''n'' + 3</sup> − 2|''n'' + 2}}}} = {{math|3, {{sfrac|14|3}}, {{sfrac|15|2}}, {{sfrac|62|5}}, 21, ...}}) = {{sfrac|{{OEIS2C|id=A198631}} ({{math|''n'' + 1}})|{{OEIS2C|id=A006519}} ({{math|''n'' + 2}})}} = {{math|{{sfrac|1|2}}, 0, −{{sfrac|1|4}}, 0, {{sfrac|1|2}}, ...}}. Also valuable for {{OEIS2C|id=A027641}} / {{OEIS2C|id=A027642}} (see [[#Connection with Worpitzky numbers|Connection with Worpitzky numbers]]).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bernoulli number
(section)
Add topic