Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
BCH code
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Decoding examples=== ==== Decoding of binary code without unreadable characters ==== Consider a BCH code in GF(2<sup>4</sup>) with <math>d=7</math> and <math>g(x) = x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1</math>. (This is used in [[QR code]]s.) Let the message to be transmitted be <nowiki>[1 1 0 1 1]</nowiki>, or in polynomial notation, <math>M(x) = x^4 + x^3 + x + 1.</math> The "checksum" symbols are calculated by dividing <math>x^{10} M(x)</math> by <math>g(x)</math> and taking the remainder, resulting in <math>x^9 + x^4 + x^2</math> or <nowiki>[ 1 0 0 0 0 1 0 1 0 0 ]</nowiki>. These are appended to the message, so the transmitted codeword is <nowiki>[ 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 ]</nowiki>. Now, imagine that there are two bit-errors in the transmission, so the received codeword is [ 1 {{color|red|0}} 0 1 1 1 0 0 0 {{color|red|1}} 1 0 1 0 0 ]. In polynomial notation: :<math>R(x) = C(x) + x^{13} + x^5 = x^{14} + x^{11} + x^{10} + x^9 + x^5 + x^4 + x^2</math> In order to correct the errors, first calculate the syndromes. Taking <math>\alpha = 0010,</math> we have <math>s_1 = R(\alpha^1) = 1011,</math> <math>s_2 = 1001,</math> <math>s_3 = 1011,</math> <math>s_4 = 1101,</math> <math>s_5 = 0001,</math> and <math>s_6 = 1001.</math> Next, apply the Peterson procedure by row-reducing the following augmented matrix. :<math>\left [ S_{3 \times 3} | C_{3 \times 1} \right ] = \begin{bmatrix}s_1&s_2&s_3&s_4\\ s_2&s_3&s_4&s_5\\ s_3&s_4&s_5&s_6\end{bmatrix} = \begin{bmatrix}1011&1001&1011&1101\\ 1001&1011&1101&0001\\ 1011&1101&0001&1001\end{bmatrix} \Rightarrow \begin{bmatrix}0001&0000&1000&0111\\ 0000&0001&1011&0001\\ 0000&0000&0000&0000 \end{bmatrix}</math> Due to the zero row, {{math|''S''<sub>3Γ3</sub>}} is singular, which is no surprise since only two errors were introduced into the codeword. However, the upper-left corner of the matrix is identical to {{closed-closed|''S''<sub>2Γ2</sub> <nowiki>|</nowiki> ''C''<sub>2Γ1</sub>}}, which gives rise to the solution <math>\lambda_2 = 1000,</math> <math>\lambda_1 = 1011.</math> The resulting error locator polynomial is <math>\Lambda(x) = 1000 x^2 + 1011 x + 0001,</math> which has zeros at <math>0100 = \alpha^{-13}</math> and <math>0111 = \alpha^{-5}.</math> The exponents of <math>\alpha</math> correspond to the error locations. There is no need to calculate the error values in this example, as the only possible value is 1. ==== Decoding with unreadable characters ==== Suppose the same scenario, but the received word has two unreadable characters [ 1 {{color|red|0}} 0 ? 1 1 ? 0 0 {{color|red|1}} 1 0 1 0 0 ]. We replace the unreadable characters by zeros while creating the polynomial reflecting their positions <math>\Gamma(x) = \left(\alpha^8x - 1\right)\left(\alpha^{11}x - 1\right).</math> We compute the syndromes <math>s_1=\alpha^{-7}, s_2=\alpha^{1}, s_3=\alpha^{4}, s_4=\alpha^{2}, s_5=\alpha^{5},</math> and <math>s_6=\alpha^{-7}.</math> (Using log notation which is independent on GF(2<sup>4</sup>) isomorphisms. For computation checking we can use the same representation for addition as was used in previous example. Hexadecimal description of the powers of <math>\alpha</math> are consecutively 1,2,4,8,3,6,C,B,5,A,7,E,F,D,9 with the addition based on bitwise xor.) Let us make syndrome polynomial :<math>S(x)=\alpha^{-7}+\alpha^{1}x+\alpha^{4}x^2+\alpha^{2}x^3+\alpha^{5}x^4+\alpha^{-7}x^5,</math> compute :<math>S(x)\Gamma(x)=\alpha^{-7}+\alpha^{4}x+\alpha^{-1}x^2+\alpha^{6}x^3+\alpha^{-1}x^4+\alpha^{5}x^5+\alpha^{7}x^6+\alpha^{-3}x^7.</math> Run the extended Euclidean algorithm: :<math>\begin{align} &\begin{pmatrix}S(x)\Gamma(x)\\ x^6\end{pmatrix} \\ [6pt] ={} &\begin{pmatrix}\alpha^{-7} +\alpha^{4}x+ \alpha^{-1}x^2+ \alpha^{6}x^3+ \alpha^{-1}x^4+ \alpha^{5}x^5 +\alpha^{7}x^6+ \alpha^{-3}x^7 \\ x^6\end{pmatrix} \\ [6pt] ={} &\begin{pmatrix}\alpha^{7}+ \alpha^{-3}x & 1\\ 1 & 0\end{pmatrix} \begin{pmatrix}x^6\\ \alpha^{-7} +\alpha^{4}x +\alpha^{-1}x^2 +\alpha^{6}x^3 +\alpha^{-1}x^4 +\alpha^{5}x^5 +2\alpha^{7}x^6 +2\alpha^{-3}x^7\end{pmatrix} \\ [6pt] ={} &\begin{pmatrix}\alpha^{7}+ \alpha^{-3}x & 1\\ 1 & 0\end{pmatrix} \begin{pmatrix}\alpha^4 + \alpha^{-5}x & 1\\ 1 & 0\end{pmatrix} \\ &\qquad \begin{pmatrix}\alpha^{-7}+ \alpha^{4}x+ \alpha^{-1}x^2+ \alpha^{6}x^3+ \alpha^{-1}x^4+ \alpha^{5}x^5\\ \alpha^{-3} +\left(\alpha^{-7}+ \alpha^{3}\right)x+ \left(\alpha^{3}+ \alpha^{-1}\right)x^2+ \left(\alpha^{-5}+ \alpha^{-6}\right)x^3+ \left(\alpha^3+ \alpha^{1}\right)x^4+ 2\alpha^{-6}x^5+ 2x^6\end{pmatrix} \\ [6pt] ={} &\begin{pmatrix}\left(1+ \alpha^{-4}\right)+ \left(\alpha^{1}+ \alpha^{2}\right)x+ \alpha^{7}x^2 & \alpha^{7}+ \alpha^{-3}x \\ \alpha^4+ \alpha^{-5}x & 1\end{pmatrix} \begin{pmatrix}\alpha^{-7}+ \alpha^{4}x+ \alpha^{-1}x^2+ \alpha^{6}x^3+ \alpha^{-1}x^4+ \alpha^{5}x^5\\ \alpha^{-3}+ \alpha^{-2}x+ \alpha^{0}x^2+ \alpha^{-2}x^3+ \alpha^{-6}x^4\end{pmatrix} \\ [6pt] ={} &\begin{pmatrix}\alpha^{-3}+ \alpha^{5}x+ \alpha^{7}x^2 & \alpha^{7}+ \alpha^{-3}x \\ \alpha^4+ \alpha^{-5}x & 1\end{pmatrix} \begin{pmatrix}\alpha^{-5}+ \alpha^{-4}x & 1\\ 1 & 0 \end{pmatrix} \\ &\qquad \begin{pmatrix}\alpha^{-3}+ \alpha^{-2}x+ \alpha^{0}x^2+ \alpha^{-2}x^3+ \alpha^{-6}x^4\\ \left(\alpha^{7}+ \alpha^{-7}\right)+ \left(2\alpha^{-7}+ \alpha^{4}\right)x+ \left(\alpha^{-5}+ \alpha^{-6}+ \alpha^{-1}\right)x^2+ \left(\alpha^{-7}+ \alpha^{-4}+ \alpha^{6}\right)x^3+ \left(\alpha^{4}+ \alpha^{-6}+ \alpha^{-1}\right)x^4+ 2\alpha^{5}x^5\end{pmatrix} \\ [6pt] ={} &\begin{pmatrix}\alpha^{7}x+ \alpha^{5}x^2+ \alpha^{3}x^3 & \alpha^{-3}+ \alpha^{5}x+ \alpha^{7}x^2\\ \alpha^{3}+ \alpha^{-5}x+ \alpha^{6}x^2 & \alpha^4+ \alpha^{-5}x\end{pmatrix} \begin{pmatrix}\alpha^{-3}+ \alpha^{-2}x+ \alpha^{0}x^2+ \alpha^{-2}x^3+ \alpha^{-6}x^4\\ \alpha^{-4}+ \alpha^{4}x+ \alpha^{2}x^2+ \alpha^{-5}x^3\end{pmatrix}. \end{align}</math> We have reached polynomial of degree at most 3, and as :<math>\begin{pmatrix}-\left(\alpha^4+ \alpha^{-5}x\right) & \alpha^{-3}+ \alpha^{5}x+ \alpha^{7}x^2\\ \alpha^{3}+ \alpha^{-5}x+ \alpha^{6}x^2 & -\left(\alpha^{7}x+ \alpha^{5}x^2+ \alpha^{3}x^3\right)\end{pmatrix} \begin{pmatrix}\alpha^{7}x+ \alpha^{5}x^2+ \alpha^{3}x^3 & \alpha^{-3} + \alpha^{5}x + \alpha^{7}x^2\\ \alpha^{3} + \alpha^{-5}x + \alpha^{6}x^2 & \alpha^4 + \alpha^{-5}x\end{pmatrix} = \begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix},</math> we get :<math>\begin{pmatrix}-\left(\alpha^4+ \alpha^{-5}x\right) & \alpha^{-3}+ \alpha^{5}x+ \alpha^{7}x^2\\ \alpha^{3}+ \alpha^{-5}x+ \alpha^{6}x^2 & -\left(\alpha^{7}x+ \alpha^{5}x^2+ \alpha^{3}x^3\right)\end{pmatrix} \begin{pmatrix}S(x)\Gamma(x)\\ x^6\end{pmatrix} = \begin{pmatrix}\alpha^{-3}+ \alpha^{-2}x+ \alpha^{0}x^2+ \alpha^{-2}x^3+ \alpha^{-6}x^4\\ \alpha^{-4}+ \alpha^{4}x+ \alpha^{2}x^2+ \alpha^{-5}x^3\end{pmatrix}. </math> Therefore, :<math>S(x)\Gamma(x)\left(\alpha^{3} + \alpha^{-5}x + \alpha^{6}x^2\right) - \left(\alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3\right)x^6 = \alpha^{-4} + \alpha^{4}x + \alpha^{2}x^2 + \alpha^{-5}x^3.</math> Let <math>\Lambda(x) = \alpha^{3}+ \alpha^{-5}x+ \alpha^{6}x^2.</math> Don't worry that <math>\lambda_0\neq 1.</math> Find by brute force a root of <math>\Lambda.</math> The roots are <math>\alpha^2,</math> and <math>\alpha^{10}</math> (after finding for example <math>\alpha^2</math> we can divide <math>\Lambda</math> by corresponding monom <math>\left(x - \alpha^2\right)</math> and the root of resulting monom could be found easily). Let :<math>\begin{align} \Xi(x) &= \Gamma(x)\Lambda(x) = \alpha^3 + \alpha^4x^2 + \alpha^2x^3 + \alpha^{-5}x^4 \\ \Omega(x) &= S(x)\Xi(x) \equiv \alpha^{-4} + \alpha^4x + \alpha^2x^2 + \alpha^{-5}x^3 \bmod{x^6} \end{align}</math> Let us look for error values using formula :<math>e_j = -\frac{\Omega \left(\alpha^{-i_j} \right)}{\Xi' \left(\alpha^{-i_j} \right)},</math> where <math>\alpha^{-i_j}</math> are roots of <math>\Xi(x).</math> <math>\Xi'(x)=\alpha^{2}x^2.</math> We get :<math>\begin{align} e_1 &=-\frac{\Omega(\alpha^4)}{\Xi'(\alpha^{4})} = \frac{\alpha^{-4}+\alpha^{-7}+\alpha^{-5}+\alpha^{7}}{\alpha^{-5}} =\frac{\alpha^{-5}}{\alpha^{-5}}=1 \\ e_2 &=-\frac{\Omega(\alpha^7)}{\Xi'(\alpha^{7})} = \frac{\alpha^{-4}+\alpha^{-4}+\alpha^{1}+\alpha^{1}}{\alpha^{1}}=0 \\ e_3 &=-\frac{\Omega(\alpha^{10})}{\Xi'(\alpha^{10})} = \frac{\alpha^{-4}+\alpha^{-1}+\alpha^{7}+\alpha^{-5}}{\alpha^{7}}=\frac{\alpha^{7}}{\alpha^{7}}=1 \\ e_4 &=-\frac{\Omega(\alpha^{2})}{\Xi'(\alpha^{2})} = \frac{\alpha^{-4}+\alpha^{6}+\alpha^{6}+\alpha^{1}}{\alpha^{6}}=\frac{\alpha^{6}}{\alpha^{6}}=1 \end{align}</math> Fact, that <math>e_3=e_4=1,</math> should not be surprising. Corrected code is therefore [ 1 {{color|green|1}} 0 {{color|green|1}} 1 1 {{color|green|0}} 0 0 {{color|green|0}} 1 0 1 0 0]. ==== Decoding with unreadable characters with a small number of errors ==== Let us show the algorithm behaviour for the case with small number of errors. Let the received word is [ 1 {{color|red|0}} 0 ? 1 1 ? 0 0 0 1 0 1 0 0 ]. Again, replace the unreadable characters by zeros while creating the polynomial reflecting their positions <math>\Gamma(x) = \left(\alpha^{8}x - 1\right)\left(\alpha^{11}x - 1\right).</math> Compute the syndromes <math>s_1 = \alpha^{4}, s_2 = \alpha^{-7}, s_3 = \alpha^{1}, s_4 = \alpha^{1}, s_5 = \alpha^{0},</math> and <math>s_6 = \alpha^{2}.</math> Create syndrome polynomial :<math>\begin{align} S(x) &= \alpha^{4} + \alpha^{-7}x + \alpha^{1}x^2 + \alpha^{1}x^3 + \alpha^{0}x^4 + \alpha^{2}x^5, \\ S(x)\Gamma(x) &= \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 + \alpha^{-1}x^6 + \alpha^{6}x^7. \end{align}</math> Let us run the extended Euclidean algorithm: :<math>\begin{align} \begin{pmatrix} S(x)\Gamma(x) \\ x^6 \end{pmatrix} &= \begin{pmatrix} \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 + \alpha^{-1}x^6 + \alpha^{6}x^7 \\ x^6 \end{pmatrix} \\ &= \begin{pmatrix} \alpha^{-1} + \alpha^{6}x & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x^6 \\ \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 + 2\alpha^{-1}x^6 + 2\alpha^{6}x^7 \end{pmatrix} \\ &= \begin{pmatrix} \alpha^{-1} + \alpha^{6}x & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha^{3} + \alpha^{1}x & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 \\ \alpha^{7} + \left(\alpha^{-5} + \alpha^{5}\right)x + 2\alpha^{-7}x^2 + 2\alpha^{6}x^3 + 2\alpha^{4}x^4 + 2\alpha^{2}x^5 + 2x^6 \end{pmatrix} \\ &= \begin{pmatrix} \left(1 + \alpha^{2}\right) + \left(\alpha^{0} + \alpha^{-6}\right)x + \alpha^{7}x^2 & \alpha^{-1} + \alpha^{6}x \\ \alpha^{3} + \alpha^{1}x & 1 \end{pmatrix} \begin{pmatrix} \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 \\ \alpha^{7} + \alpha^{0}x \end{pmatrix} \end{align}</math> We have reached polynomial of degree at most 3, and as : <math> \begin{pmatrix} -1 & \alpha^{-1} + \alpha^{6}x \\ \alpha^{3} + \alpha^{1}x & -\left(\alpha^{-7} + \alpha^{7}x + \alpha^{7}x^2\right) \end{pmatrix} \begin{pmatrix} \alpha^{-7} + \alpha^{7}x + \alpha^{7}x^2 & \alpha^{-1} + \alpha^{6}x \\ \alpha^{3} + \alpha^{1}x & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, </math> we get : <math> \begin{pmatrix} -1 & \alpha^{-1} + \alpha^{6}x \\ \alpha^{3} + \alpha^{1}x & -\left(\alpha^{-7} + \alpha^{7}x + \alpha^{7}x^2\right) \end{pmatrix}\begin{pmatrix} S(x)\Gamma(x) \\ x^6 \end{pmatrix} = \begin{pmatrix} \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 \\ \alpha^{7} + \alpha^{0}x \end{pmatrix}. </math> Therefore, : <math>S(x)\Gamma(x)\left(\alpha^{3} + \alpha^{1}x\right) - \left(\alpha^{-7} + \alpha^{7}x + \alpha^{7}x^2\right)x^6 = \alpha^{7} + \alpha^{0}x.</math> Let <math>\Lambda(x) = \alpha^{3} + \alpha^{1}x.</math> Don't worry that <math>\lambda_0 \neq 1.</math> The root of <math>\Lambda(x)</math> is <math>\alpha^{3-1}.</math> Let :<math>\begin{align} \Xi(x) &= \Gamma(x)\Lambda(x) = \alpha^{3} + \alpha^{-7}x + \alpha^{-4}x^2 + \alpha^{5}x^3, \\ \Omega(x) &= S(x)\Xi(x) \equiv \alpha^{7} + \alpha^{0}x \bmod{x^6} \end{align}</math> Let us look for error values using formula <math>e_j = -\Omega\left(\alpha^{-i_j}\right)/\Xi'\left(\alpha^{-i_j}\right),</math> where <math>\alpha^{-i_j}</math> are roots of polynomial <math>\Xi(x).</math> : <math>\Xi'(x) = \alpha^{-7} + \alpha^{5}x^2.</math> We get :<math>\begin{align} e_1 &= -\frac{\Omega\left(\alpha^4\right)}{\Xi'\left(\alpha^{4}\right)} = \frac{\alpha^{7} + \alpha^{4}}{\alpha^{-7} + \alpha^{-2}} = \frac{\alpha^{3}}{\alpha^{3}} = 1 \\ e_2 &= -\frac{\Omega\left(\alpha^7\right)}{\Xi'\left(\alpha^{7}\right)} = \frac{\alpha^{7} + \alpha^{7}}{\alpha^{-7} + \alpha^{4}} = 0 \\ e_3 &= -\frac{\Omega\left(\alpha^2\right)}{\Xi'\left(\alpha^2\right)} = \frac{\alpha^{7} + \alpha^{2}}{\alpha^{-7} + \alpha^{-6}} = \frac{\alpha^{-3}}{\alpha^{-3}} = 1 \end{align}</math> The fact that <math>e_3 = 1</math> should not be surprising. Corrected code is therefore [ 1 {{color|green|1}} 0 {{color|green|1}} 1 1 {{color|green|0}} 0 0 0 1 0 1 0 0].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
BCH code
(section)
Add topic