Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Variance
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Sum of uncorrelated variables==== {{main article|Bienaymé's identity}} {{see also|Sum of normally distributed random variables}} One reason for the use of the variance in preference to other measures of dispersion is that the variance of the sum (or the difference) of [[uncorrelated]] random variables is the sum of their variances: <math display="block">\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}(X_i).</math> This statement is called the [[Irénée-Jules Bienaymé|Bienaymé]] formula<ref>[[Michel Loève|Loève, M.]] (1977) "Probability Theory", ''Graduate Texts in Mathematics'', Volume 45, 4th edition, Springer-Verlag, p. 12.</ref> and was discovered in 1853.<ref>[[Irénée-Jules Bienaymé|Bienaymé, I.-J.]] (1853) "Considérations à l'appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés", ''Comptes rendus de l'Académie des sciences Paris'', 37, p. 309–317; digital copy available [http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-2994&I=313] {{Webarchive|url=https://web.archive.org/web/20180623145935/http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-2994&I=313|date=2018-06-23}}</ref><ref>[[Irénée-Jules Bienaymé|Bienaymé, I.-J.]] (1867) "Considérations à l'appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés", ''Journal de Mathématiques Pures et Appliquées, Série 2'', Tome 12, p. 158–167; digital copy available [http://gallica.bnf.fr/ark:/12148/bpt6k16411c/f166.image.n19][http://sites.mathdoc.fr/JMPA/PDF/JMPA_1867_2_12_A10_0.pdf]</ref> It is often made with the stronger condition that the variables are [[statistical independence|independent]], but being uncorrelated suffices. So if all the variables have the same variance σ<sup>2</sup>, then, since division by ''n'' is a linear transformation, this formula immediately implies that the variance of their mean is <math display="block"> \operatorname{Var}\left(\overline{X}\right) = \operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^n X_i\right) = \frac{1}{n^2}\sum_{i=1}^n \operatorname{Var}\left(X_i\right) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}. </math> That is, the variance of the mean decreases when ''n'' increases. This formula for the variance of the mean is used in the definition of the [[standard error (statistics)|standard error]] of the sample mean, which is used in the [[central limit theorem]]. To prove the initial statement, it suffices to show that <math display="block">\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y).</math> The general result then follows by induction. Starting with the definition, <math display="block">\begin{align} \operatorname{Var}(X + Y) &= \operatorname{E}\left[(X + Y)^2\right] - (\operatorname{E}[X + Y])^2 \\[5pt] &= \operatorname{E}\left[X^2 + 2XY + Y^2\right] - (\operatorname{E}[X] + \operatorname{E}[Y])^2. \end{align}</math> Using the linearity of the [[Expectation Operator|expectation operator]] and the assumption of independence (or uncorrelatedness) of ''X'' and ''Y'', this further simplifies as follows: <math display="block">\begin{align} \operatorname{Var}(X + Y) &= \operatorname{E}{\left[X^2\right]} + 2\operatorname{E}[XY] + \operatorname{E}{\left[Y^2\right]} - \left(\operatorname{E}[X]^2 + 2\operatorname{E}[X] \operatorname{E}[Y] + \operatorname{E}[Y]^2\right) \\[5pt] &= \operatorname{E}\left[X^2\right] + \operatorname{E}\left[Y^2\right] - \operatorname{E}[X]^2 - \operatorname{E}[Y]^2 \\[5pt] &= \operatorname{Var}(X) + \operatorname{Var}(Y). \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Variance
(section)
Add topic