Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Stochastic process
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Stationarity==== {{Main|Stationary process}} '''Stationarity''' is a mathematical property that a stochastic process has when all the random variables of that stochastic process are identically distributed. In other words, if <math>X</math> is a stationary stochastic process, then for any <math>t\in T</math> the random variable <math>X_t</math> has the same distribution, which means that for any set of <math>n</math> index set values <math>t_1,\dots, t_n</math>, the corresponding <math>n</math> random variables <div class="center"><math> X_{t_1}, \dots X_{t_n}, </math></div> all have the same [[probability distribution]]. The index set of a stationary stochastic process is usually interpreted as time, so it can be the integers or the real line.<ref name="Lamperti1977page6">{{cite book|author=John Lamperti|title=Stochastic processes: a survey of the mathematical theory|url=https://books.google.com/books?id=Pd4cvgAACAAJ|year=1977|publisher=Springer-Verlag|isbn=978-3-540-90275-1|pages=6 and 7}}</ref><ref name="GikhmanSkorokhod1969page4">{{cite book|author1=Iosif I. Gikhman |author2=Anatoly Vladimirovich Skorokhod|title=Introduction to the Theory of Random Processes|url=https://books.google.com/books?id=yJyLzG7N7r8C&pg=PR2|year=1969|publisher=Courier Corporation|isbn=978-0-486-69387-3|page=4}}</ref> But the concept of stationarity also exists for point processes and random fields, where the index set is not interpreted as time.<ref name="Lamperti1977page6"/><ref name="Adler2010page14">{{cite book|author=Robert J. Adler|title=The Geometry of Random Fields|url=https://books.google.com/books?id=ryejJmJAj28C&pg=PA263|year=2010|publisher=SIAM|isbn=978-0-89871-693-1|pages=14, 15}}</ref><ref name="ChiuStoyan2013page112">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3|page=112}}</ref> When the index set <math>T</math> can be interpreted as time, a stochastic process is said to be stationary if its finite-dimensional distributions are invariant under translations of time. This type of stochastic process can be used to describe a physical system that is in steady state, but still experiences random fluctuations.<ref name="Lamperti1977page6"/> The intuition behind stationarity is that as time passes the distribution of the stationary stochastic process remains the same.<ref name="Doob1990page94">{{cite book|author=Joseph L. Doob|title=Stochastic processes|url=https://books.google.com/books?id=NrsrAAAAYAAJ|year=1990|publisher=Wiley|pages=94β96}}</ref> A sequence of random variables forms a stationary stochastic process only if the random variables are identically distributed.<ref name="Lamperti1977page6"/> A stochastic process with the above definition of stationarity is sometimes said to be strictly stationary, but there are other forms of stationarity. One example is when a discrete-time or continuous-time stochastic process <math>X</math> is said to be stationary in the wide sense, then the process <math>X</math> has a finite second moment for all <math>t\in T</math> and the covariance of the two random variables <math>X_t</math> and <math>X_{t+h}</math> depends only on the number <math>h</math> for all <math>t\in T</math>.<ref name="Doob1990page94"/><ref name="Florescu2014page298">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|url=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22|year=2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2|pages=298, 299}}</ref> [[Aleksandr Khinchin|Khinchin]] introduced the related concept of '''stationarity in the wide sense''', which has other names including '''covariance stationarity''' or '''stationarity in the broad sense'''.<ref name="Florescu2014page298"/><ref name="GikhmanSkorokhod1969page8">{{cite book|author1=Iosif Ilyich Gikhman|author2=Anatoly Vladimirovich Skorokhod|title=Introduction to the Theory of Random Processes|url=https://books.google.com/books?id=yJyLzG7N7r8C&pg=PR2|year=1969|publisher=Courier Corporation|isbn=978-0-486-69387-3|page=8}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Stochastic process
(section)
Add topic