Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quantum entanglement
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Entangled states === There are several canonical entangled states that appear often in theory and experiments. For two [[qubits]], the [[Bell state]]s are : <math>|\Phi^\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_B \pm |1\rangle_A \otimes |1\rangle_B)</math> : <math>|\Psi^\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |1\rangle_B \pm |1\rangle_A \otimes |0\rangle_B).</math> These four pure states are all maximally entangled and form an [[orthonormal]] [[basis (linear algebra)|basis]] of the Hilbert space of the two qubits.<ref name="Rieffel2011"/>{{rp|38–39}}<ref name="Nielsen-2010"/>{{rp|98}} They provide examples of how quantum mechanics can violate [[Bell's theorem|Bell-type inequalities]].<ref name="Rieffel2011"/>{{rp|62}}<ref name="Nielsen-2010"/>{{rp|116}} For {{nowrap|''M'' > 2}} qubits, the [[Greenberger–Horne–Zeilinger state|GHZ state]] is : <math>|\mathrm{GHZ}\rangle = \frac{|0\rangle^{\otimes M} + |1\rangle^{\otimes M}}{\sqrt{2}},</math> which reduces to the Bell state <math>|\Phi^+\rangle</math> for {{nowrap|1=''M'' = 2}}. The traditional GHZ state was defined for {{nowrap|1=''M'' = 3}}. GHZ states are occasionally extended to [[qudit]]s, i.e., systems of ''d'' rather than 2 dimensions.<ref>{{Cite journal|last1=Caves |first1=Carlton M. |author-link=Carlton M. Caves |last2=Fuchs |first2=Christopher A. |last3=Schack |first3=Rüdiger |date=2002-08-20 |title=Unknown quantum states: The quantum de Finetti representation |journal=[[Journal of Mathematical Physics]] |volume=43 |number=9 |pages=4537–4559 |arxiv=quant-ph/0104088 |doi=10.1063/1.1494475 |quote=Mermin was the first to point out the interesting properties of this three-system state, following the lead of D. M. Greenberger, M. Horne, and A. Zeilinger, "Going beyond Bell's Theorem," in Bell's Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos (Kluwer, Dordrecht, 1989), p. 69, where a similar four-system state was proposed. |bibcode=2002JMP....43.4537C}}</ref><ref>{{cite journal|first1=Yulin |last1=Chi |display-authors=etal |title=A programmable qudit-based quantum processor |journal=Nature Communications |year=2022 |volume=13 |issue=1 |page=1136 |doi=10.1038/s41467-022-28767-x |pmid=35246519 |bibcode=2022NatCo..13.1166C |pmc=8897515 }}</ref> Also for {{nowrap|''M'' > 2}} qubits, there are [[Spin squeezing|spin squeezed states]], a class of [[squeezed coherent states]] satisfying certain restrictions on the uncertainty of spin measurements, which are necessarily entangled.<ref>{{cite journal |last1=Kitagawa |first1=Masahiro |last2=Ueda |first2=Masahito |year=1993 |title=Squeezed Spin States |url=https://ir.library.osaka-u.ac.jp/repo/ouka/all/77656/PhysRevA_47_06_005138.pdf |journal=Physical Review A |volume=47 |issue=6 |pages=5138–5143 |bibcode=1993PhRvA..47.5138K |doi=10.1103/physreva.47.5138 |pmid=9909547 |hdl-access=free |hdl=11094/77656}}</ref> Spin squeezed states are good candidates for enhancing precision measurements using quantum entanglement.<ref>{{cite journal |last1=Wineland |first1=D. J. |last2=Bollinger |first2=J. J. |last3=Itano |first3=W. M. |last4=Moore |first4=F. L. |last5=Heinzen |first5=D. J. |year=1992 |title=Spin squeezing and reduced quantum noise in spectroscopy |journal=Physical Review A |volume=46 |issue=11 |pages=R6797–R6800 |bibcode=1992PhRvA..46.6797W |doi=10.1103/PhysRevA.46.R6797 |pmid=9908086}}</ref> For two [[boson]]ic modes, a [[NOON state]] is : <math>|\psi_\text{NOON} \rangle = \frac{|N \rangle_a |0\rangle_b + |{0}\rangle_a |{N}\rangle_b}{\sqrt{2}}. </math> This is like the Bell state <math>|\Psi^+\rangle</math> except the basis states <math>|0\rangle</math> and <math>|1\rangle</math> have been replaced with "the ''N'' photons are in one mode" and "the ''N'' photons are in the other mode".<ref name="Kishore2007">{{cite journal|first1=Kishore T. |last1=Kapale |first2=Jonathan P. |last2=Dowling |author-link2=Jonathan Dowling |title=A Bootstrapping Approach for Generating Maximally Path-Entangled Photon States |arxiv=quant-ph/0612196 |journal=Physical Review Letters |volume=99 |page=053602 |year=2007 |issue=5 |doi=10.1103/PhysRevLett.99.053602|pmid=17930751 |bibcode=2007PhRvL..99e3602K }}</ref> Finally, there also exist [[twin Fock states]] for bosonic modes, which can be created by feeding a [[Fock state]] into two arms leading to a beam splitter. They are the sum of multiple NOON states, and can be used to achieve the [[Heisenberg limit]].<ref>{{cite journal |doi = 10.1103/PhysRevLett.71.1355|pmid = 10055519|title = Interferometric detection of optical phase shifts at the Heisenberg limit|journal = Physical Review Letters|volume = 71|issue = 9|pages = 1355–1358|year = 1993|last1 = Holland|first1 = M. J|last2 = Burnett|first2 = K|bibcode = 1993PhRvL..71.1355H}}</ref> For the appropriately chosen measures of entanglement, Bell, GHZ, and NOON states are maximally entangled while spin squeezed and twin Fock states are only partially entangled.<ref>{{cite journal|doi=10.1126/science.1097522 |year=2004 |volume=304 |journal=Science |first1=Christian F. |last1=Roos |display-authors=etal |title=Control and Measurement of Three-Qubit Entangled States|issue=5676 |pages=1478–1480 |pmid=15178795 }}</ref><ref name="Kishore2007"/><ref>{{cite journal|last1=Pezzè |first1=L. |last2=Smerzi |first2=A. |last3=Oberthaler |first3=M. K. |last4=Schmied |first4=R. |last5=Treutlein |first5=P. |year=2018 |title=Quantum metrology with nonclassical states of atomic ensembles |journal=Reviews of Modern Physics |volume=90 |number=3 |page=035005 |doi=10.1103/revmodphys.90.035005 |arxiv=1609.01609}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quantum entanglement
(section)
Add topic