Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Protein folding
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Single-molecule force spectroscopy === Single molecule techniques such as optical tweezers and AFM have been used to understand protein folding mechanisms of isolated proteins as well as proteins with chaperones.<ref name="pmid24001118">{{cite journal | vauthors = Mashaghi A, Kramer G, Lamb DC, Mayer MP, Tans SJ | title = Chaperone action at the single-molecule level | journal = Chemical Reviews | volume = 114 | issue = 1 | pages = 660β76 | date = January 2014 | pmid = 24001118 | doi = 10.1021/cr400326k }}</ref> [[Optical tweezers]] have been used to stretch single protein molecules from their C- and N-termini and unfold them to allow study of the subsequent refolding.<ref>{{cite journal | vauthors = Jagannathan B, Marqusee S | title = Protein folding and unfolding under force | journal = Biopolymers | volume = 99 | issue = 11 | pages = 860β9 | date = November 2013 | pmid = 23784721 | pmc = 4065244 | doi = 10.1002/bip.22321 }}</ref> The technique allows one to measure folding rates at single-molecule level; for example, optical tweezers have been recently applied to study folding and unfolding of proteins involved in blood coagulation. [[von Willebrand factor]] (vWF) is a protein with an essential role in blood clot formation process. It discovered β using single molecule optical tweezers measurement β that calcium-bound vWF acts as a shear force sensor in the blood. Shear force leads to unfolding of the A2 domain of vWF, whose refolding rate is dramatically enhanced in the presence of calcium.<ref>{{cite journal | vauthors = Jakobi AJ, Mashaghi A, Tans SJ, Huizinga EG | title = Calcium modulates force sensing by the von Willebrand factor A2 domain | journal = Nature Communications | volume = 2 | pages = 385 | date = July 2011 | pmid = 21750539 | pmc = 3144584 | doi = 10.1038/ncomms1385 | bibcode = 2011NatCo...2..385J }}</ref> Recently, it was also shown that the simple src [[SH3 domain]] accesses multiple unfolding pathways under force.<ref>{{cite journal | vauthors = Jagannathan B, Elms PJ, Bustamante C, Marqusee S | title = Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 109 | issue = 44 | pages = 17820β5 | date = October 2012 | pmid = 22949695 | pmc = 3497811 | doi = 10.1073/pnas.1201800109 | bibcode = 2012PNAS..10917820J | doi-access = free }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Protein folding
(section)
Add topic