Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Noether's theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example 3: Conformal transformation === Both examples 1 and 2 are over a 1-dimensional manifold (time). An example involving spacetime is a [[conformal transformation]] of a massless real scalar field with a [[Quartic interaction|quartic potential]] in (3 + 1)-[[Minkowski spacetime]]. :<math>\begin{align} \mathcal{S}[\varphi] & = \int \mathcal{L}\left[\varphi (x), \partial_\mu \varphi (x)\right] d^4 x \\[3pt] & = \int \left(\frac{1}{2}\partial^\mu \varphi \partial_\mu \varphi - \lambda \varphi^4\right) d^4 x \end{align}</math> For ''Q'', consider the generator of a spacetime rescaling. In other words, :<math>Q[\varphi(x)] = x^\mu\partial_\mu \varphi(x) + \varphi(x). </math> The second term on the right hand side is due to the "conformal weight" of <math>\varphi</math>. And :<math>Q[\mathcal{L}] = \partial^\mu\varphi\left(\partial_\mu\varphi + x^\nu\partial_\mu\partial_\nu\varphi + \partial_\mu\varphi\right) - 4\lambda\varphi^3\left(x^\mu\partial_\mu\varphi + \varphi\right).</math> This has the form of :<math>\partial_\mu\left[\frac{1}{2}x^\mu\partial^\nu\varphi\partial_\nu\varphi - \lambda x^\mu \varphi^4 \right] = \partial_\mu\left(x^\mu\mathcal{L}\right)</math> (where we have performed a change of dummy indices) so set :<math>f^\mu = x^\mu\mathcal{L}.</math> Then :<math>\begin{align} j^\mu & = \left[\frac{\partial}{\partial(\partial_\mu\varphi)}\mathcal{L}\right]Q[\varphi]-f^\mu \\ & = \partial^\mu\varphi\left(x^\nu\partial_\nu\varphi + \varphi\right) - x^\mu\left(\frac 1 2 \partial^\nu\varphi\partial_\nu\varphi - \lambda\varphi^4\right). \end{align}</math> Noether's theorem states that <math>\partial_\mu j^\mu = 0</math> (as one may explicitly check by substituting the Euler–Lagrange equations into the left hand side). If one tries to find the [[Ward–Takahashi identity|Ward–Takahashi]] analog of this equation, one runs into a problem because of [[anomaly (physics)|anomalies]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Noether's theorem
(section)
Add topic