Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Newton's method
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Systems of equations=== ===={{mvar|k}} variables, {{mvar|k}} functions{{anchor|multidimensional}}==== One may also use Newton's method to solve systems of {{mvar|k}} equations, which amounts to finding the (simultaneous) zeroes of {{mvar|k}} continuously differentiable functions <math>f:\R^k\to \R.</math> This is equivalent to finding the zeroes of a single vector-valued function <math>F:\R^k\to \R^k.</math> In the formulation given above, the scalars {{mvar|x<sub>n</sub>}} are replaced by vectors {{math|'''x'''{{sub|{{var|n}}}}}} and instead of dividing the function {{math|{{var|f}}({{var|x}}{{sub|{{var|n}}}})}} by its derivative {{math|{{var|{{prime|f}}}}({{var|x}}{{sub|{{var|n}}}})}} one instead has to left multiply the function {{math|{{var|F}}('''x'''{{sub|{{var|n}}}})}} by the inverse of its {{math|{{var|k}} Γ {{var|k}}}} [[Jacobian matrix]] {{math|{{var|J}}{{sub|{{var|F}}}}('''x'''{{sub|{{var|n}}}})}}.<ref name=":3">{{Cite book |last1=Burden |first1=Burton |url=https://archive.org/details/numericalanaly00burd/ |title=Numerical Analysis |last2=Fairs |first2=J. Douglas |last3=Reunolds |first3=Albert C |date=July 1981 |publisher=Prindle, Weber & Schmidt |isbn=0-87150-314-X |edition=2nd |location=Boston, MA, United States |oclc=1036752194 |pages=448β452 |language=en}}</ref><ref>{{Cite book |last= Evans |first=Gwynne A. |url-access= registration|url=https://archive.org/details/practicalnumeric0000evan/ |title=Practical Numerical Analysis |date=1995 |publisher=John Wiley & Sons|isbn=0471955353 |location= Chichester |publication-date=1995 |pages=30β33 |language=en | oclc=1319419671 }}</ref><ref>{{Cite book |last1=Demidovich |first1=Boris Pavlovich |url=https://archive.org/details/computational-mathematics/mode/2up |title=Computational Mathematics |last2=Maron |first2=Isaak Abramovich |date=1981 |publisher=MIR Publishers |isbn=9780828507042 |edition=Third |location=Moscow |pages=460β478 |language=en}}</ref> This results in the expression <math display="block">\mathbf{x}_{n+1} = \mathbf{x}_{n} - J_F(\mathbf{x}_n)^{-1} F(\mathbf{x}_n) .</math> or, by solving the [[system of linear equations]] <math display="block">J_F(\mathbf{x}_n) (\mathbf{x}_{n+1} - \mathbf{x}_n) = -F(\mathbf{x}_n)</math> for the unknown {{math|'''x'''{{sub|{{var|n}} + 1}} β '''x'''{{sub|{{var|n}}}}}}.<ref>{{cite book |last1=Kiusalaas |first1=Jaan |title=Numerical Methods in Engineering with Python 3 |date=March 2013 |publisher=Cambridge University Press |location=New York |isbn=978-1-107-03385-6 |pages=175β176 |edition=3rd |url=https://www.cambridge.org/9781107033856}}</ref> ===={{mvar|k}} variables, {{mvar|m}} equations, with {{math|{{var|m}} > {{var|k}}}}==== The {{mvar|k}}-dimensional variant of Newton's method can be used to solve systems of greater than {{mvar|k}} (nonlinear) equations as well if the algorithm uses the [[generalized inverse]] of the non-square [[Jacobian matrix and determinant|Jacobian]] matrix {{math|{{var|J}}{{isup|+}} {{=}} ({{var|J}}{{isup|T}}{{var|J}}){{sup|β1}}{{var|J}}{{isup|T}}}} instead of the inverse of {{mvar|J}}. If the [[system of nonlinear equations|nonlinear system]] has no solution, the method attempts to find a solution in the [[non-linear least squares]] sense. See [[GaussβNewton algorithm]] for more information. ==== Example ==== For example, the following set of equations needs to be solved for vector of points <math>\ [\ x_1, x_2\ ]\ ,</math> given the vector of known values <math>\ [\ 2, 3\ ] ~.</math>{{refn | This example is similar to one in reference,<ref name=":3" /> pages 451 and 452, but simplified to two equations instead of three.}} <math> \begin{array}{lcr} 5\ x_1^2 + x_1\ x_2^2 + \sin^2( 2\ x_2 ) &= \quad 2 \\ e^{ 2\ x_1 - x_2 } + 4\ x_2 &= \quad 3 \end{array}</math> the function vector, <math>\ F (X_k)\ ,</math> and Jacobian Matrix, <math>\ J(X_k)\ </math> for iteration k, and the vector of known values, <math>\ Y\ ,</math> are defined below. <math>\begin{align} ~ & F(X_k) ~ = ~ \begin{bmatrix} \begin{align} ~ & f_{1}(X_{k}) \\ ~ & f_{2}(X_{k}) \end{align} \end{bmatrix} ~ = ~ \begin{bmatrix} \begin{align} ~ & 5\ x_{1}^2 + x_{1}\ x^2_{2} + \sin^2( 2\ x_{2} ) \\ ~ & e^{ 2\ x_{1}-x_{2} } + 4\ x_{2} \end{align} \end{bmatrix}_k \\ ~ & J(X_k) = \begin{bmatrix} ~ \frac{\ \partial{ f_{1}(X) }\ }{ \partial{x_{1}} }\ , & ~ \frac{\ \partial{ f_{1}(X) }\ }{ \partial{x_{2}} } ~\\ ~ \frac{\ \partial{ f_{2}(X) }\ }{ \partial{x_{1}} }\ , & ~ \frac{\ \partial{ f_{2}(X) }\ }{ \partial{x_{2}} } ~ \end{bmatrix}_k ~ = ~ \begin{bmatrix} \begin{align} ~ & 10\ x_{1} + x^2_{2}\ , & & 2\ x_1\ x_2+4\ \sin( 2\ x_{2} )\ \cos( 2\ x_{2} ) \\ ~ & 2\ e^{ 2\ x_{1} - x_{2} }\ , & &-e^{ 2\ x_{1} - x_{2}} + 4 \end{align} \end{bmatrix}_k \\ ~ & Y = \begin{bmatrix}~ 2 ~\\~ 3 ~\end{bmatrix} \end{align} </math> Note that <math>\ F(X_k)\ </math> could have been rewritten to absorb <math>\ Y\ ,</math> and thus eliminate <math>Y</math> from the equations. The equation to solve for each iteration are <math>\begin{align} \begin{bmatrix} \begin{align} ~ & ~ 10\ x_{1} + x^2_{2 }\ , & & 2 x_1 x_2 + 4\ \sin( 2\ x_{2} )\ \cos( 2\ x_{2} ) ~\\ ~ & ~ 2\ e^{ 2\ x_{1} - x_{2} }\ , & & -e^{ 2\ x_{1} - x_{2} } + 4 ~ \end{align} \end{bmatrix}_k \begin{bmatrix} ~ c_{1} ~\\ ~ c_{2} ~ \end{bmatrix}_{k+1} = \begin{bmatrix} ~ 5\ x_{1}^2 + x_{1}\ x^2_{2} + \sin^2( 2\ x_{2} ) - 2 ~\\ ~ e^{ 2\ x_{1} - x_{2} } + 4\ x_{2} - 3 ~ \end{bmatrix}_k \end{align}</math> and <math> X_{ k+1 } ~=~ X_k - C_{ k+1 } </math> The iterations should be repeated until <math>\ \Bigg[ \sum_{i=1}^{i=2} \Bigl| f(x_i)_k - (y_i)_k \Bigr|\Bigg] < E\ ,</math> where <math>\ E\ </math> is a value acceptably small enough to meet application requirements. If vector <math>\ X_0\ </math> is initially chosen to be <math>\ \begin{bmatrix}~ 1 ~&~ 1 ~\end{bmatrix}\ ,</math> that is, <math>\ x_1 = 1\ ,</math> and <math>\ x_2=1\ ,</math> and <math>\ E\ ,</math> is chosen to be 1.{{10^|β3}}, then the example converges after four iterations to a value of <math>\ X_4 = \left[~ 0.567297,\ -0.309442 ~\right] ~.</math> ==== Iterations ==== The following iterations were made during the course of the solution. :{| class="wikitable" |+ Converging iteration sequence |- style="vertical-align:bottom;" ! Step ! Variable ! {{left|Value}} |- |rowspan="2"; align="center";| {{math| 0 }} |align="right";| {{mvar| x {{=}} }} | <math> \begin{bmatrix}\ 1\ , & 1 \end{bmatrix} </math> |- |align="right";| {{math| ''f''(''x'') {{=}} }} |<math> \begin{bmatrix}\ 6.82682\ , & 6.71828\ \end{bmatrix} </math> |- |colspan="3" ; style="background:white;"| |- |rowspan="4"; align="center";| {{math| 1 }} |align="right";| {{mvar| J {{=}} }} | <math> \begin{bmatrix}\ 11 ~, & \quad 0.486395 \\ \ 5.43656\ , & 1.28172 \end{bmatrix} </math> |- |align="right";| {{mvar| c {{=}} }} | <math>\begin{bmatrix}\ 0.382211\ , & 1.27982\ \end{bmatrix} </math> |- |align="right";| {{mvar| x {{=}} }} | <math>\begin{bmatrix}\ 0.617789\ , & -0.279818\ \end{bmatrix} </math> |- |align="right";| {{math| ''f''(''x'') {{=}} }} | <math>\begin{bmatrix}\ 2.23852\ , & 3.43195\ \end{bmatrix} </math> |- |colspan="3" ; style="background:white;"| |- |rowspan="4"; align="center";| {{math| 2 }} |align="right";| {{mvar| J {{=}} }} | <math>\begin{bmatrix}\ 6.25618\ , & -2.1453 \\ \ 9.10244\ , &\quad -0.551218 \end{bmatrix} </math> |- |align="right";| {{mvar| c {{=}} }} | <math>\begin{bmatrix} 0.0494549\ , & 0.0330411\ \end{bmatrix} </math> |- |align="right";| {{mvar| x {{=}} }} | <math>\begin{bmatrix}\ 0.568334\ , & -0.312859\ \end{bmatrix} </math> |- |align="right";| {{math| ''f''(''x'') {{=}} }} | <math>\begin{bmatrix}\ 2.01366\ , & 3.00966\ \end{bmatrix} </math> |- |colspan="3" ; style="background:white;"| |- |rowspan="4"; align="center";| {{math| 3 }} |align="right";| {{mvar| J {{=}} }} | <math>\begin{bmatrix}\ 5.78122\ , & -2.25449 \\ \ 8.52219\ , &\quad -0.261095\ \end{bmatrix} </math> |- |align="right";| {{mvar| c {{=}} }} | <math>\begin{bmatrix} 0.00102862\ , & -0.00342339\ \end{bmatrix} </math> |- |align="right";| {{mvar| x {{=}} }} | <math>\begin{bmatrix}\ 0.567305\ , & -0.309435\ \end{bmatrix} </math> |- |align="right";| {{math| ''f''(''x'') {{=}} }} | <math>\begin{bmatrix}\ 2.00003\ , & 3.00006\ \end{bmatrix} </math> |- |colspan="3" ; style="background:white;"| |- |rowspan="4"; align="center";| {{math| 4 }} |align="right";| {{mvar| J {{=}} }} | <math>\begin{bmatrix}\ 5.7688~ , & ~ -2.24118 \\ \ 8.47561\ , &\quad -0.237805 \end{bmatrix}\ </math> |- |align="right";| {{mvar| c {{=}} }} | <math>\begin{bmatrix}\ 7.73132\!\times\!10^{-6} ~, & ~ 6.93265\!\times\!10^{-6}\ \end{bmatrix} </math> |- |align="right";| {{mvar| x {{=}} }} | <math>\begin{bmatrix}\ 0.567297\ , & -0.309442\ \end{bmatrix} </math> |- |align="right";| {{math| ''f''(''x'') {{=}} }} | <math>\begin{bmatrix} ~ 2\ ,~ & ~ 3 ~ \end{bmatrix} </math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Newton's method
(section)
Add topic