Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Network topology
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Star=== {{Main article|Star network}} [[File:StarNetwork.svg|thumb|Star network topology]] In star topology (also called hub-and-spoke), every peripheral node (computer workstation or any other peripheral) is connected to a central node called a hub or switch. The hub is the server and the peripherals are the clients. The network does not necessarily have to resemble a star to be classified as a star network, but all of the peripheral nodes on the network must be connected to one central hub. All traffic that traverses the network passes through the central hub, which acts as a [[Repeater|signal repeater]]. The star topology is considered the easiest topology to design and implement. One advantage of the star topology is the simplicity of adding additional nodes. The primary disadvantage of the star topology is that the hub represents a single point of failure. Also, since all peripheral communication must flow through the central hub, the aggregate central bandwidth forms a network bottleneck for large clusters. ====Extended star==== The extended star network topology extends a physical star topology by one or more repeaters between the central node and the [[peripheral]] (or 'spoke') nodes. The repeaters are used to extend the maximum transmission distance of the physical layer, the point-to-point distance between the central node and the peripheral nodes. Repeaters allow greater transmission distance, further than would be possible using just the transmitting power of the central node. The use of repeaters can also overcome limitations from the standard upon which the physical layer is based. A physical extended star topology in which repeaters are replaced with hubs or switches is a type of hybrid network topology and is referred to as a physical hierarchical star topology, although some texts make no distinction between the two topologies. A physical hierarchical star topology can also be referred as a tier-star topology. This topology differs from a [[tree topology]] in the way star networks are connected together. A tier-star topology uses a central node, while a tree topology uses a central bus and can also be referred as a star-bus network. ====Distributed star==== A distributed star is a network topology that is composed of individual networks that are based upon the physical star topology connected in a linear fashion β i.e., 'daisy-chained' β with no central or top level connection point (e.g., two or more 'stacked' hubs, along with their associated star connected nodes or 'spokes').
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Network topology
(section)
Add topic