Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Net (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Limits in a Cartesian product=== A net in the [[product space]] has a limit if and only if each projection has a limit. Explicitly, let <math>\left(X_i\right)_{i \in I}</math> be topological spaces, endow their [[Cartesian product]] <math display=block>{\textstyle\prod} X_\bull := \prod_{i \in I} X_i</math> with the [[product topology]], and that for every index <math>l \in I,</math> denote the canonical projection to <math>X_l</math> by <math display=block>\begin{alignat}{4} \pi_l :\;&& {\textstyle\prod} X_\bull &&\;\to\;& X_l \\[0.3ex] && \left(x_i\right)_{i \in I} &&\;\mapsto\;& x_l \\ \end{alignat}</math> Let <math>f_\bull = \left(f_a\right)_{a \in A}</math> be a net in <math>{\textstyle\prod} X_\bull</math> directed by <math>A</math> and for every index <math>i \in I,</math> let <math display=block>\pi_i\left(f_\bull\right) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(\pi_i\left(f_a\right)\right)_{a \in A}</math> denote the result of "plugging <math>f_\bull</math> into <math>\pi_i</math>", which results in the net <math>\pi_i\left(f_\bull\right) : A \to X_i.</math> It is sometimes useful to think of this definition in terms of [[function composition]]: the net <math>\pi_i\left(f_\bull\right)</math> is equal to the composition of the net <math>f_\bull : A \to {\textstyle\prod} X_\bull</math> with the projection <math>\pi_i : {\textstyle\prod} X_\bull \to X_i;</math> that is, <math>\pi_i\left(f_\bull\right) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \pi_i \,\circ\, f_\bull.</math> For any given point <math>L = \left(L_i\right)_{i \in I} \in {\textstyle\prod\limits_{i \in I}} X_i,</math> the net <math>f_\bull</math> converges to <math>L</math> in the product space <math>{\textstyle\prod} X_\bull</math> if and only if for every index <math>i \in I,</math> <math>\pi_i\left(f_\bull\right) \;\stackrel{\scriptscriptstyle\text{def}}{=}\; \left(\pi_i\left(f_a\right)\right)_{a \in A}</math> converges to <math>L_i</math> in <math>X_i.</math>{{sfn|Willard|2004|p=76}} And whenever the net <math>f_\bull</math> clusters at <math>L</math> in <math>{\textstyle\prod} X_\bull</math> then <math>\pi_i\left(f_\bull\right)</math> clusters at <math>L_i</math> for every index <math>i \in I.</math>{{sfn|Willard|2004|p=77}} However, the converse does not hold in general.{{sfn|Willard|2004|p=77}} For example, suppose <math>X_1 = X_2 = \Reals</math> and let <math>f_\bull = \left(f_a\right)_{a \in \N}</math> denote the sequence <math>(1, 1), (0, 0), (1, 1), (0, 0), \ldots</math> that alternates between <math>(1, 1)</math> and <math>(0, 0).</math> Then <math>L_1 := 0</math> and <math>L_2 := 1</math> are cluster points of both <math>\pi_1\left(f_\bull\right)</math> and <math>\pi_2\left(f_\bull\right)</math> in <math>X_1 \times X_2 = \Reals^2</math> but <math>\left(L_1, L_2\right) = (0, 1)</math> is not a cluster point of <math>f_\bull</math> since the open ball of radius <math>1</math> centered at <math>(0, 1)</math> does not contain even a single point <math>f_\bull</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Net (mathematics)
(section)
Add topic