Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Monte Carlo method
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Artificial intelligence for games=== {{Main|Monte Carlo tree search}} Monte Carlo methods have been developed into a technique called [[Monte-Carlo tree search]] that is useful for searching for the best move in a game. Possible moves are organized in a [[search tree]] and many random simulations are used to estimate the long-term potential of each move. A black box simulator represents the opponent's moves.<ref>{{cite web|url=http://sander.landofsand.com/publications/Monte-Carlo_Tree_Search_-_A_New_Framework_for_Game_AI.pdf |title=Monte-Carlo Tree Search: A New Framework for Game AI |author-first1=Guillaume |author-last1=Chaslot |author-first2=Sander |author-last2=Bakkes |author-first3=Istvan |author-last3=Szita |author-first4=Pieter |author-last4=Spronck |website=Sander.landofsand.com |access-date=October 28, 2017}}</ref> The Monte Carlo tree search (MCTS) method has four steps:<ref>{{cite web|url=http://mcts.ai/about/index.html |title=Monte Carlo Tree Search - About|access-date=May 15, 2013 |archive-url=https://web.archive.org/web/20151129023043/http://mcts.ai/about/index.html |archive-date=November 29, 2015 |url-status=dead}}</ref> # Starting at root node of the tree, select optimal child nodes until a leaf node is reached. # Expand the leaf node and choose one of its children. # Play a simulated game starting with that node. # Use the results of that simulated game to update the node and its ancestors. The net effect, over the course of many simulated games, is that the value of a node representing a move will go up or down, hopefully corresponding to whether or not that node represents a good move. Monte Carlo Tree Search has been used successfully to play games such as [[Go (game)|Go]],<ref>{{cite book|chapter=Parallel Monte-Carlo Tree Search |doi=10.1007/978-3-540-87608-3_6 |volume=5131 |pages=60–71 |series=Lecture Notes in Computer Science |year=2008 |author-last1=Chaslot |author-first1=Guillaume M. J. -B |author-last2=Winands |author-first2=Mark H. M. |author-last3=Van Den Herik |author-first3=H. Jaap |title=Computers and Games |isbn=978-3-540-87607-6 |citeseerx=10.1.1.159.4373}}</ref> [[Tantrix]],<ref>{{cite report|url=https://www.tantrix.com/Tantrix/TRobot/MCTS%20Final%20Report.pdf |title=Monte-Carlo Tree Search in the game of Tantrix: Cosc490 Final Report |author-last=Bruns |author-first=Pete}}</ref> [[Battleship (game)|Battleship]],<ref>{{cite web |url=http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Publications_files/pomcp.pdf |title=Monte-Carlo Planning in Large POMDPs |author-first1=David |author-last1=Silver |author-first2=Joel |author-last2=Veness |website=0.cs.ucl.ac.uk |access-date=October 28, 2017 |archive-date=July 18, 2016 |archive-url=https://web.archive.org/web/20160718050040/http://www0.cs.ucl.ac.uk/staff/d.silver/web/Publications_files/pomcp.pdf |url-status=dead }}</ref> [[Havannah (board game)|Havannah]],<ref>{{cite book|chapter=Improving Monte–Carlo Tree Search in Havannah |doi=10.1007/978-3-642-17928-0_10 |volume=6515 |pages=105–115|bibcode=2011LNCS.6515..105L |series=Lecture Notes in Computer Science |year=2011 |author-last1=Lorentz |author-first1=Richard J. |title=Computers and Games |isbn=978-3-642-17927-3}}</ref> and [[Arimaa]].<ref>{{cite web|url=http://www.arimaa.com/arimaa/papers/ThomasJakl/bc-thesis.pdf |author-first=Tomas |author-last=Jakl |title=Arimaa challenge – comparison study of MCTS versus alpha-beta methods |website=Arimaa.com |access-date=October 28, 2017}}</ref> {{See also|Computer Go}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Monte Carlo method
(section)
Add topic