Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Moment of inertia
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Resultant torque === The inertia matrix appears in the application of Newton's second law to a rigid assembly of particles. The resultant torque on this system is,<ref name="Marion 1995"/><ref name="Kane"/> <math display="block">\boldsymbol{\tau} = \sum_{i=1}^n \left(\mathbf{r_i} - \mathbf{R}\right) \times m_i\mathbf{a}_i,</math> where <math>\mathbf{a}_i</math> is the acceleration of the particle <math>P_i</math>. The [[kinematics]] of a rigid body yields the formula for the acceleration of the particle <math>P_i</math> in terms of the position <math>\mathbf{R}</math> and acceleration <math>\mathbf{A}_\mathbf{R}</math> of the reference point, as well as the angular velocity vector <math>\boldsymbol{\omega}</math> and angular acceleration vector <math>\boldsymbol{\alpha}</math> of the rigid system as, <math display="block">\mathbf{a}_i = \boldsymbol{\alpha} \times \left(\mathbf{r}_i - \mathbf{R}\right) + \boldsymbol{\omega} \times \left( \boldsymbol{\omega} \times \left(\mathbf{r}_i - \mathbf{R}\right) \right) + \mathbf{A}_\mathbf{R}.</math> Use the center of mass <math>\mathbf{C}</math> as the reference point, and introduce the skew-symmetric matrix <math>\left[\Delta\mathbf{r}_i\right] = \left[\mathbf{r}_i - \mathbf{C}\right]</math> to represent the cross product <math>(\mathbf{r}_i - \mathbf{C}) \times</math>, to obtain <math display="block"> \boldsymbol{\tau} = \left(-\sum_{i=1}^n m_i\left[\Delta\mathbf{r}_i\right]^2\right)\boldsymbol{\alpha} + \boldsymbol{\omega} \times \left(-\sum_{i=1}^n m_i \left[\Delta\mathbf{r}_i\right]^2\right)\boldsymbol{\omega} </math> The calculation uses the identity <math display="block"> \Delta\mathbf{r}_i \times \left(\boldsymbol{\omega} \times \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right)\right) + \boldsymbol{\omega} \times \left(\left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right) \times \Delta\mathbf{r}_i\right) = 0, </math> obtained from the [[Jacobi identity]] for the triple [[cross product]] as shown in the proof below: {{math proof|proof= <math display="block">\begin{align} \boldsymbol{\tau} &= \sum_{i=1}^n (\mathbf{r_i} - \mathbf{R})\times (m_i\mathbf{a}_i) \\ &= \sum_{i=1}^n \Delta\mathbf{r}_i\times (m_i\mathbf{a}_i) \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times \mathbf{a}_i]\;\ldots\text{ cross-product scalar multiplication} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\mathbf{a}_{\text{tangential},i} + \mathbf{a}_{\text{centripetal},i} + \mathbf{A}_\mathbf{R})] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\mathbf{a}_{\text{tangential},i} + \mathbf{a}_{\text{centripetal},i} + 0)] \\ \end{align}</math> In the last statement, <math>\mathbf{A}_\mathbf{R} = 0</math> because <math>\mathbf{R}</math> is either at rest or moving at a constant velocity but not accelerated, or the origin of the fixed (world) coordinate reference system is placed at the center of mass <math>\mathbf{C}</math>. And distributing the cross product over the sum, we get <math display="block">\begin{align} \boldsymbol{\tau} &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times \mathbf{a}_{\text{tangential},i} + \Delta\mathbf{r}_i\times \mathbf{a}_{\text{centripetal},i}] \\ \boldsymbol{\tau} &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol{\alpha} \times \Delta\mathbf{r}_i) + \Delta\mathbf{r}_i\times (\boldsymbol{\omega} \times \mathbf{v}_{\text{tangential},i})] \\ \boldsymbol{\tau} &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol{\alpha} \times \Delta\mathbf{r}_i) + \Delta\mathbf{r}_i \times (\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \Delta\mathbf{r}_i))] \end{align}</math> Then, the following [[Jacobi identity]] is used on the last term: <math display="block">\begin{align} 0 &= \Delta\mathbf{r}_i\times (\boldsymbol\omega \times(\boldsymbol\omega\times \Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) + (\boldsymbol\omega\times\Delta\mathbf{r}_i)\times(\Delta\mathbf{r}_i\times\boldsymbol\omega)\\ &= \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) + (\boldsymbol\omega\times\Delta\mathbf{r}_i)\times -(\boldsymbol\omega\times\Delta\mathbf{r}_i)\;\ldots\text{ cross-product anticommutativity} \\ &= \Delta\mathbf{r}_i \times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) + -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)]\;\ldots\text{ cross-product scalar multiplication} \\ &= \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) + -[0]\;\ldots\text{ self cross-product} \\ 0 &= \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) \end{align}</math> The result of applying [[Jacobi identity]] can then be continued as follows: <math display="block">\begin{align} \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) &= -[\boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i)] \\ &= -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)(\boldsymbol\omega\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i(\boldsymbol\omega\cdot(\boldsymbol\omega\times\Delta\mathbf{r}_i))]\;\ldots\text{ vector triple product} \\ &= -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)(\boldsymbol\omega\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i(\Delta\mathbf{r}_i\cdot(\boldsymbol\omega\times\boldsymbol\omega))]\;\ldots\text{ scalar triple product} \\ &= -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)(\boldsymbol\omega\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i(\Delta\mathbf{r}_i\cdot(0))]\;\ldots\text{ self cross-product} \\ &= -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)(\boldsymbol\omega\cdot\Delta\mathbf{r}_i)] \\ &= -[\boldsymbol\omega\times(\Delta\mathbf{r}_i (\boldsymbol\omega\cdot\Delta\mathbf{r}_i))]\;\ldots\text{ cross-product scalar multiplication} \\ &= \boldsymbol\omega\times -(\Delta\mathbf{r}_i (\boldsymbol\omega\cdot\Delta\mathbf{r}_i))\;\ldots\text{ cross-product scalar multiplication} \\ \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) &= \boldsymbol\omega\times -(\Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega))\;\ldots\text{ dot-product commutativity} \\ \end{align} </math> The final result can then be substituted to the main proof as follows: <math display="block">\begin{align} \boldsymbol\tau &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i))] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times -(\Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega))] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{0 - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\}] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{[\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)] - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\}]\;\ldots\;\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) = 0 \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{[\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)] - \boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)\}]\;\ldots\text{ addition associativity} \\ \end{align}</math> <math display="block">\begin{align} \boldsymbol{\tau} &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\} - \boldsymbol\omega\times\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)]\;\ldots\text{ cross-product distributivity over addition} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\} - (\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)(\boldsymbol\omega\times\boldsymbol\omega)]\;\ldots\text{ cross-product scalar multiplication} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\} - (\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)(0)]\;\ldots\text{ self cross-product} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\}] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\Delta\mathbf{r}_i \times (\boldsymbol\omega \times \Delta\mathbf{r}_i)\}]\;\ldots\text{ vector triple product} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times -(\Delta\mathbf{r}_i \times \boldsymbol\alpha) + \boldsymbol\omega\times \{\Delta\mathbf{r}_i \times -(\Delta\mathbf{r}_i \times \boldsymbol\omega)\}]\;\ldots\text{ cross-product anticommutativity} \\ &= -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\Delta\mathbf{r}_i \times \boldsymbol\alpha) + \boldsymbol\omega\times \{\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol\omega)\}]\;\ldots\text{ cross-product scalar multiplication} \\ &= -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\Delta\mathbf{r}_i \times \boldsymbol\alpha)] + -\sum_{i=1}^n m_i [\boldsymbol\omega\times \{\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol\omega)\}]\;\ldots\text{ summation distributivity} \\ \boldsymbol\tau &= -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\Delta\mathbf{r}_i \times \boldsymbol\alpha)] + \boldsymbol\omega\times -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol\omega)]\;\ldots\;\boldsymbol\omega\text{ is not characteristic of particle } P_i \end{align}</math> Notice that for any vector <math>\mathbf{u}</math>, the following holds: <math display="block">\begin{align} -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\Delta\mathbf{r}_i \times \mathbf{u})] &= -\sum_{i=1}^n m_i \left(\begin{bmatrix} 0 & -\Delta r_{3,i} & \Delta r_{2,i} \\ \Delta r_{3,i} & 0 & -\Delta r_{1,i} \\ -\Delta r_{2,i} & \Delta r_{1,i} & 0 \end{bmatrix} \left(\begin{bmatrix} 0 & -\Delta r_{3,i} & \Delta r_{2,i} \\ \Delta r_{3,i} & 0 & -\Delta r_{1,i} \\ -\Delta r_{2,i} & \Delta r_{1,i} & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \right)\right)\;\ldots\text{ cross-product as matrix multiplication} \\[6pt] &= -\sum_{i=1}^n m_i \left(\begin{bmatrix} 0 & -\Delta r_{3,i} & \Delta r_{2,i} \\ \Delta r_{3,i} & 0 & -\Delta r_{1,i} \\ -\Delta r_{2,i} & \Delta r_{1,i} & 0 \end{bmatrix} \begin{bmatrix} -\Delta r_{3,i}\,u_2 + \Delta r_{2,i}\,u_3 \\ +\Delta r_{3,i}\,u_1 - \Delta r_{1,i}\,u_3 \\ -\Delta r_{2,i}\,u_1 + \Delta r_{1,i}\,u_2 \end{bmatrix}\right) \\[6pt] &= -\sum_{i=1}^n m_i \begin{bmatrix} -\Delta r_{3,i}(+\Delta r_{3,i}\,u_1 - \Delta r_{1,i}\,u_3) + \Delta r_{2,i}(-\Delta r_{2,i}\,u_1 + \Delta r_{1,i}\,u_2) \\ +\Delta r_{3,i}(-\Delta r_{3,i}\,u_2 + \Delta r_{2,i}\,u_3) - \Delta r_{1,i}(-\Delta r_{2,i}\,u_1 + \Delta r_{1,i}\,u_2) \\ -\Delta r_{2,i}(-\Delta r_{3,i}\,u_2 + \Delta r_{2,i}\,u_3) + \Delta r_{1,i}(+\Delta r_{3,i}\,u_1 - \Delta r_{1,i}\,u_3) \end{bmatrix} \\[6pt] &= -\sum_{i=1}^n m_i \begin{bmatrix} -\Delta r_{3,i}^2\,u_1 + \Delta r_{1,i}\Delta r_{3,i}\,u_3 - \Delta r_{2,i}^2\,u_1 + \Delta r_{1,i}\Delta r_{2,i}\,u_2 \\ -\Delta r_{3,i}^2\,u_2 + \Delta r_{2,i}\Delta r_{3,i}\,u_3 + \Delta r_{2,i}\Delta r_{1,i}\,u_1 - \Delta r_{1,i}^2\,u_2 \\ +\Delta r_{3,i}\Delta r_{2,i}\,u_2 - \Delta r_{2,i}^2\,u_3 + \Delta r_{3,i}\Delta r_{1,i}\,u_1 - \Delta r_{1,i}^2\,u_3 \end{bmatrix} \\[6pt] &= -\sum_{i=1}^n m_i \begin{bmatrix} -(\Delta r_{2,i}^2 + \Delta r_{3,i}^2)\,u_1 + \Delta r_{1,i}\Delta r_{2,i}\,u_2 + \Delta r_{1,i}\Delta r_{3,i}\,u_3 \\ +\Delta r_{2,i}\Delta r_{1,i}\,u_1 - (\Delta r_{1,i}^2 + \Delta r_{3,i}^2)\,u_2 + \Delta r_{2,i}\Delta r_{3,i}\,u_3 \\ +\Delta r_{3,i}\Delta r_{1,i}\,u_1 + \Delta r_{3,i}\Delta r_{2,i}\,u_2 - (\Delta r_{1,i}^2 + \Delta r_{2,i}^2)\,u_3 \end{bmatrix} \\[6pt] &= -\sum_{i=1}^n m_i \begin{bmatrix} -(\Delta r_{2,i}^2 + \Delta r_{3,i}^2) & \Delta r_{1,i}\Delta r_{2,i} & \Delta r_{1,i}\Delta r_{3,i} \\ \Delta r_{2,i}\Delta r_{1,i} & -(\Delta r_{1,i}^2 + \Delta r_{3,i}^2) & \Delta r_{2,i}\Delta r_{3,i} \\ \Delta r_{3,i}\Delta r_{1,i} & \Delta r_{3,i}\Delta r_{2,i} & -(\Delta r_{1,i}^2 + \Delta r_{2,i}^2) \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \\ &= -\sum_{i=1}^n m_i [\Delta r_i]^2 \mathbf{u} \\[6pt] -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \mathbf{u})] &= \left(-\sum_{i=1}^n m_i [\Delta r_i]^2\right) \mathbf{u}\;\ldots\;\mathbf{u}\text{ is not characteristic of } P_i \end{align}</math> Finally, the result is used to complete the main proof as follows: <math display="block">\begin{align} \boldsymbol{\tau} &= -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol{\alpha})] + \boldsymbol{\omega} \times -\sum_{i=1}^n m_i \Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol{\omega})] \\ &= \left(-\sum_{i=1}^n m_i [\Delta r_i]^2\right) \boldsymbol{\alpha} + \boldsymbol{\omega} \times \left(-\sum_{i=1}^n m_i [\Delta r_i]^2\right) \boldsymbol{\omega} \end{align}</math> }} Thus, the resultant torque on the rigid system of particles is given by <math display="block">\boldsymbol{\tau} = \mathbf{I}_\mathbf{C} \boldsymbol{\alpha} + \boldsymbol{\omega} \times \mathbf{I}_\mathbf{C} \boldsymbol{\omega},</math> where <math>\mathbf{I_C}</math> is the inertia matrix relative to the center of mass.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Moment of inertia
(section)
Add topic