Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Measure (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Results regarding semifinite measures==== <!--Help appreciated, please add results / check the c.l.d. product measure thing--> * Let <math>\mathbb F</math> be <math>\R</math> or <math>\C,</math> and let <math>T:L_\mathbb{F}^\infty(\mu)\to\left(L_\mathbb{F}^1(\mu)\right)^*:g\mapsto T_g=\left(\int fgd\mu\right)_{f\in L_\mathbb{F}^1(\mu)}.</math> Then <math>\mu</math> is semifinite if and only if <math>T</math> is injective.{{sfn|Fremlin|2016|loc=part (a) of Theorem 243G, p. 159}}{{sfn|Fremlin|2016|loc=Section 243K, p. 162}} (This result has import in the study of the [[Lp space#Dual spaces|dual space of <math>L^1=L_\mathbb{F}^1(\mu)</math>]].) * Let <math>\mathbb F</math> be <math>\R</math> or <math>\C,</math> and let <math>{\cal T}</math> be the topology of convergence in measure on <math>L_\mathbb{F}^0(\mu).</math> Then <math>\mu</math> is semifinite if and only if <math>{\cal T}</math> is Hausdorff.{{sfn|Fremlin|2016|loc=part (a) of the Theorem in Section 245E, p. 182}}{{sfn|Fremlin|2016|loc=Section 245M, p. 188}} * (Johnson) Let <math>X</math> be a set, let <math>{\cal A}</math> be a sigma-algebra on <math>X,</math> let <math>\mu</math> be a measure on <math>{\cal A},</math> let <math>Y</math> be a set, let <math>{\cal B}</math> be a sigma-algebra on <math>Y,</math> and let <math>\nu</math> be a measure on <math>{\cal B}.</math> If <math>\mu,\nu</math> are both not a <math>0-\infty</math> measure, then both <math>\mu</math> and <math>\nu</math> are semifinite if and only if [[Product measure|<math>(\mu\times_\text{cld}\nu)</math>]]<math>(A\times B)=\mu(A)\nu(B)</math> for all <math>A\in{\cal A}</math> and <math>B\in{\cal B}.</math> (Here, <math>\mu\times_\text{cld}\nu</math> is the measure defined in Theorem 39.1 in Berberian '65.{{sfn|Berberian|1965|loc=Theorem 39.1, p. 129}}) <!--To check: Is this actually the ''c.l.d. product measure''?{{sfn|Fremlin|2016|loc=Definition 251F, p. 206}}-->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Measure (mathematics)
(section)
Add topic