Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
MIPS architecture
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== MIPS multi-threading === Each multi-threaded MIPS core can support up to two VPEs (Virtual Processing Elements) which share a single pipeline as well as other hardware resources. However, since each VPE includes a complete copy of the processor state as seen by the software system, each VPE appears as a complete standalone processor to an [[Symmetric multiprocessing|SMP]] Linux operating system. For more fine-grained thread processing applications, each VPE is capable of supporting up to nine TCs allocated across two VPEs. The TCs share a common execution unit but each has its own program counter and core register files so that each can handle a thread from the software. The MIPS MT architecture also allows the allocation of processor cycles to threads, and sets the relative thread priorities with an optional Quality of Service ([[Quality of service|QoS]]) manager block. This enables two prioritization mechanisms that determine the flow of information across the bus. The first mechanism allows the user to prioritize one thread over another. The second mechanism is used to allocate a specified ratio of the cycles to specific threads over time. The combined use of both mechanisms allows effective allocation of bandwidth to the set of threads, and better control of latencies. In real-time systems, system-level determinism is very critical, and the QoS block facilitates improvement of the predictability of a system. Hardware designers of advanced systems may replace the standard QoS block provided by MIPS Technologies with one that is specifically tuned for their application.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
MIPS architecture
(section)
Add topic