Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Laplace transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Table of selected Laplace transforms == {{main article|List of Laplace transforms}} The following table provides Laplace transforms for many common functions of a single variable.<ref>{{Citation |edition=3rd |page=455 |first1=K. F. |last1=Riley |first2=M. P. |last2=Hobson |first3=S. J. |last3=Bence |title=Mathematical methods for physics and engineering |publisher=Cambridge University Press |year=2010 |isbn=978-0-521-86153-3}}</ref><ref>{{Citation |first1=J. J. |last1=Distefano |first2=A. R. |last2=Stubberud |first3=I. J. |last3=Williams |page=78 |title=Feedback systems and control |edition=2nd |publisher=McGraw-Hill |series=Schaum's outlines |year=1995 |isbn=978-0-07-017052-0}}</ref> For definitions and explanations, see the ''Explanatory Notes'' at the end of the table. Because the Laplace transform is a linear operator, * The Laplace transform of a sum is the sum of Laplace transforms of each term.<!-- --><math display=block>\mathcal{L}\{f(t) + g(t)\} = \mathcal{L}\{f(t)\} + \mathcal{L}\{ g(t)\} </math> * The Laplace transform of a multiple of a function is that multiple times the Laplace transformation of that function.<!-- --><math display=block>\mathcal{L}\{a f(t)\} = a \mathcal{L}\{ f(t)\}</math> Using this linearity, and various [[List of trigonometric identities|trigonometric]], [[Hyperbolic function|hyperbolic]], and complex number (etc.) properties and/or identities, some Laplace transforms can be obtained from others more quickly than by using the definition directly. The unilateral Laplace transform takes as input a function whose time domain is the [[non-negative]] reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, {{math|''u''(''t'')}}. The entries of the table that involve a time delay {{math|''Ο''}} are required to be [[causal system|causal]] (meaning that {{math|''Ο'' > 0}}). A causal system is a system where the [[impulse response]] {{math|''h''(''t'')}} is zero for all time {{mvar|t}} prior to {{math|1=''t'' = 0}}. In general, the region of convergence for causal systems is not the same as that of [[anticausal system]]s. {| class="wikitable" style="text-align: center;" |+ Selected Laplace transforms |- ! scope="col" | Function ! scope="col" | Time domain <br> <math>f(t) = \mathcal{L}^{-1}\{F(s)\}</math> ! scope="col" | Laplace {{math|s}}-domain <br/> <math>F(s) = \mathcal{L}\{f(t)\}</math> ! scope="col" | Region of convergence ! scope="col" | Reference |- ! scope="row" | unit impulse | <math> \delta(t) \ </math> | <math> 1 </math> | all {{math|''s''}} | inspection |- ! scope="row" | delayed impulse | <math> \delta(t - \tau) \ </math> | <math> e^{-\tau s} \ </math> | all {{math|''s''}} | time shift of<br>unit impulse |- ! scope="row"| unit step | <math> u(t) \ </math> | <math> { 1 \over s } </math> | <math> \operatorname{Re}(s) > 0 </math> | integrate unit impulse |- ! scope="row" | delayed unit step | <math> u(t - \tau) \ </math> | <math> \frac 1 s e^{-\tau s} </math> | <math> \operatorname{Re}(s) > 0 </math> | time shift of<br>unit step |- ! scope="row" | product of delayed function and delayed step | <math> f(t-\tau)u(t-\tau) </math> | <math> e^{-s\tau}\mathcal{L}\{f(t)\}</math> | | u-substitution, <math>u=t-\tau</math> |- !rectangular impulse | <math> u (t) - u(t - \tau) </math> | <math> \frac{1}{s}(1 - e^{-\tau s}) </math> | <math> \operatorname{Re}(s) > 0 </math> | |- ! scope="row" | [[ramp function|ramp]] | <math> t \cdot u(t)\ </math> | <math>\frac 1 {s^2}</math> | <math> \operatorname{Re}(s) > 0 </math> | integrate unit<br>impulse twice |- ! scope="row" | {{math|''n''}}th power <br/> (for integer {{math|''n''}}) | <math> t^n \cdot u(t) </math> | <math> { n! \over s^{n + 1} } </math> | <math> \operatorname{Re}(s) > 0 </math> <br/> ({{math|''n'' > β1}}) | integrate unit<br>step {{math|''n''}} times |- ! scope="row" | {{math|''q''}}th power <br /> (for complex {{math|''q''}}) | <math> t^q \cdot u(t) </math> | <math> { \operatorname{\Gamma}(q + 1) \over s^{q + 1} } </math> | <math> \operatorname{Re}(s) > 0 </math> <br/> <math> \operatorname{Re}(q) > -1 </math> | <ref>{{cite book |title=Mathematical Handbook of Formulas and Tables |edition=3rd |first1=S. |last1=Lipschutz |first2=M. R. |last2=Spiegel |first3=J. |last3=Liu |series=Schaum's Outline Series |publisher=McGraw-Hill |page=183 |year=2009 |isbn=978-0-07-154855-7}} β provides the case for real {{math|''q''}}.</ref><ref>http://mathworld.wolfram.com/LaplaceTransform.html β Wolfram Mathword provides case for complex {{math|''q''}}</ref> |- ! scope="row" | {{math|''n''}}th root | <math> \sqrt[n]{t} \cdot u(t) </math> | <math> { 1 \over s^{\frac 1 n + 1} } \operatorname{\Gamma}\left(\frac 1 n + 1\right) </math> | <math> \operatorname{Re}(s) > 0 </math> | Set {{math|''q'' {{=}} 1/''n''}} above. |- ! scope="row" | {{math|''n''}}th power with frequency shift | <math>t^{n} e^{-\alpha t} \cdot u(t) </math> | <math>\frac{n!}{(s+\alpha)^{n+1}} </math> | <math> \operatorname{Re}(s) > -\alpha </math> | Integrate unit step,<br/>apply frequency shift |- ! scope="row" | delayed {{math|''n''}}th power <br /> with frequency shift | <math>(t-\tau)^n e^{-\alpha (t-\tau)} \cdot u(t-\tau) </math> | <math> \frac{n! \cdot e^{-\tau s}}{(s+\alpha)^{n+1}} </math> | <math> \operatorname{Re}(s) > -\alpha </math> | integrate unit step,<br>apply frequency shift,<br>apply time shift |- ! scope="row" | [[exponential decay]] | <math> e^{-\alpha t} \cdot u(t) </math> | <math> { 1 \over s+\alpha } </math> | <math> \operatorname{Re}(s) > -\alpha </math> | Frequency shift of<br>unit step |- ! scope="row" | [[Two-sided Laplace transform|two-sided]] exponential decay <br>(only for bilateral transform) | <math> e^{-\alpha|t|} \ </math> | <math> { 2\alpha \over \alpha^2 - s^2 } </math> | <math> -\alpha < \operatorname{Re}(s) < \alpha </math> | Frequency shift of<br>unit step |- ! scope="row" | exponential approach | <math>(1-e^{-\alpha t}) \cdot u(t) \ </math> | <math>\frac{\alpha}{s(s+\alpha)} </math> | <math> \operatorname{Re}(s) > 0 </math> | unit step minus<br/>exponential decay |- ! scope="row" | [[sine]] | <math> \sin(\omega t) \cdot u(t) \ </math> | <math> { \omega \over s^2 + \omega^2 } </math> | <math> \operatorname{Re}(s) > 0 </math> | {{sfn|Bracewell|1978|p=227}} |- ! scope="row" | [[cosine]] | <math> \cos(\omega t) \cdot u(t) \ </math> | <math> { s \over s^2 + \omega^2 } </math> | <math> \operatorname{Re}(s) > 0 </math> | {{sfn|Bracewell|1978|p=227}} |- ! scope="row" | [[hyperbolic sine]] | <math> \sinh(\alpha t) \cdot u(t) \ </math> | <math> { \alpha \over s^2 - \alpha^2 } </math> | <math> \operatorname{Re}(s) > \left| \alpha \right| </math> | {{sfn|Williams|1973|p=88}} |- ! scope="row" | [[hyperbolic cosine]] | <math> \cosh(\alpha t) \cdot u(t) \ </math> | <math> { s \over s^2 - \alpha^2 } </math> | <math> \operatorname{Re}(s) > \left| \alpha \right| </math> | {{sfn|Williams|1973|p=88}} |- ! scope="row" | exponentially decaying <br /> sine wave | <math>e^{-\alpha t} \sin(\omega t) \cdot u(t) \ </math> | <math> { \omega \over (s+\alpha)^2 + \omega^2 } </math> | <math> \operatorname{Re}(s) > - \alpha </math> | {{sfn|Bracewell|1978|p=227}} |- ! scope="row" | exponentially decaying <br /> cosine wave | <math>e^{-\alpha t} \cos(\omega t) \cdot u(t) \ </math> | <math> { s+\alpha \over (s+\alpha)^2 + \omega^2 } </math> | <math> \operatorname{Re}(s) > - \alpha </math> | {{sfn|Bracewell|1978|p=227}} |- ! scope="row" | [[natural logarithm]] | <math> \ln(t) \cdot u(t) </math> | <math> -{1 \over s} \left[ \ln(s)+\gamma \right] </math> | <math> \operatorname{Re}(s) > 0 </math> | {{sfn|Williams|1973|p=88}} |- ! scope="row" | [[Bessel function]] <br> of the first kind, <br /> of order {{math|''n''}} | <math> J_n(\omega t) \cdot u(t)</math> | <math>\frac{ \left(\sqrt{s^2+ \omega^2}-s\right)^{\!n}}{\omega^n \sqrt{s^2 + \omega^2}}</math> | <math> \operatorname{Re}(s) > 0 </math> <br/> ({{math|''n'' > β1}}) | {{sfn|Williams|1973|p=89}} |- ! scope="row" | [[Error function]] | <math> \operatorname{erf}(t) \cdot u(t) </math> | <math> \frac{1}{s} e^{s^2 / 4} \!\left(1 - \operatorname{erf} \frac{s}{2} \right)</math> | <math> \operatorname{Re}(s) > 0 </math> | {{sfn|Williams|1973|p=89}} |- | colspan=5 style="text-align: left;" |'''Explanatory notes:''' {{col-begin}} {{col-break}} * {{math|''u''(''t'')}} represents the [[Heaviside step function]]. * {{math|''Ξ΄''}} represents the [[Dirac delta function]]. * {{math|Ξ(''z'')}} represents the [[gamma function]]. * {{math|''Ξ³''}} is the [[Euler–Mascheroni constant]]. {{col-break}} * {{math|''t''}}, a real number, typically represents ''time'', although it can represent ''any'' independent dimension. * {{math|''s''}} is the [[complex number|complex]] frequency domain parameter, and {{math|Re(''s'')}} is its [[real part]]. * {{math|''Ξ±'', ''Ξ²'', ''Ο'', and ''Ο''}} are [[real numbers]]. * {{math|''n''}} is an [[integer]]. {{col-end}} |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Laplace transform
(section)
Add topic