Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Convolution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Convolution theorem === The [[convolution theorem]] states that<ref>{{cite web |last1=Weisstein |first1=Eric W |title=From MathWorld--A Wolfram Web Resource |url=https://mathworld.wolfram.com/ConvolutionTheorem.html}}</ref> : <math> \mathcal{F}\{f * g\} = \mathcal{F}\{f\}\cdot \mathcal{F}\{g\}</math> where <math> \mathcal{F}\{f\}</math> denotes the [[Fourier transform]] of <math>f</math>. ==== Convolution in other types of transformations ==== Versions of this theorem also hold for the [[Laplace transform]], [[two-sided Laplace transform]], [[Z-transform]] and [[Mellin transform]]. ==== Convolution on matrices ==== If <math>\mathcal W</math> is the [[DFT matrix|Fourier transform matrix]], then : <math>\mathcal W\left(C^{(1)}x \ast C^{(2)}y\right) = \left(\mathcal W C^{(1)} \bull \mathcal W C^{(2)}\right)(x \otimes y) = \mathcal W C^{(1)}x \circ \mathcal W C^{(2)}y</math>, where <math> \bull </math> is [[KhatriβRao product#Face-splitting product|face-splitting product]],<ref name="slyusar">{{Cite journal|last=Slyusar|first=V. I.|date= December 27, 1996|title=End products in matrices in radar applications. |url=https://slyusar.kiev.ua/en/IZV_1998_3.pdf |archive-url=https://web.archive.org/web/20130811122444/https://slyusar.kiev.ua/en/IZV_1998_3.pdf |archive-date=2013-08-11 |url-status=live|journal=Radioelectronics and Communications Systems |volume=41 |issue=3|pages=50β53}}</ref><ref name="slyusar1">{{Cite journal|last=Slyusar|first=V. I.|date=1997-05-20|title=Analytical model of the digital antenna array on a basis of face-splitting matrix products. |url=https://slyusar.kiev.ua/ICATT97.pdf |archive-url=https://web.archive.org/web/20130811112059/https://slyusar.kiev.ua/ICATT97.pdf |archive-date=2013-08-11 |url-status=live|journal=Proc. ICATT-97, Kyiv|pages=108β109}}</ref><ref name="DIPED">{{Cite journal|last=Slyusar|first=V. I.|date=1997-09-15|title=New operations of matrices product for applications of radars|url=https://slyusar.kiev.ua/DIPED_1997.pdf |archive-url=https://web.archive.org/web/20130811113217/https://slyusar.kiev.ua/DIPED_1997.pdf |archive-date=2013-08-11 |url-status=live|journal=Proc. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-97), Lviv.|pages=73β74}}</ref><ref name="slyusar2">{{Cite journal|last=Slyusar|first=V. I.|date=March 13, 1998|title=A Family of Face Products of Matrices and its Properties|url=https://slyusar.kiev.ua/FACE.pdf |archive-url=https://web.archive.org/web/20130811113935/https://slyusar.kiev.ua/FACE.pdf |archive-date=2013-08-11 |url-status=live|journal=Cybernetics and Systems Analysis C/C of Kibernetika I Sistemnyi Analiz.- 1999.|volume=35|issue=3|pages=379β384|doi=10.1007/BF02733426|s2cid=119661450}}</ref><ref name="general">{{Cite journal|last=Slyusar|first=V. I.|date=2003|title=Generalized face-products of matrices in models of digital antenna arrays with nonidentical channels|url=https://slyusar.kiev.ua/en/IZV_2003_10.pdf |archive-url=https://web.archive.org/web/20130811125643/https://slyusar.kiev.ua/en/IZV_2003_10.pdf |archive-date=2013-08-11 |url-status=live|journal=Radioelectronics and Communications Systems|volume=46|issue=10|pages=9β17}}</ref> <math> \otimes </math> denotes [[Kronecker product]], <math> \circ </math> denotes [[Hadamard product (matrices)|Hadamard product]] (this result is an evolving of [[count sketch]] properties<ref name="ninh">{{cite conference | title = Fast and scalable polynomial kernels via explicit feature maps | last1 = Ninh | first1 = Pham | first2 = Rasmus | last2 = Pagh | author2-link = Rasmus Pagh | date = 2013 | publisher = Association for Computing Machinery | conference = SIGKDD international conference on Knowledge discovery and data mining | doi = 10.1145/2487575.2487591 }}</ref>). This can be generalized for appropriate matrices <math>\mathbf{A},\mathbf{B}</math>: : <math>\mathcal W\left((\mathbf{A}x) \ast (\mathbf{B}y)\right) = \left((\mathcal W \mathbf{A}) \bull (\mathcal W \mathbf{B})\right)(x \otimes y) = (\mathcal W \mathbf{A}x) \circ (\mathcal W \mathbf{B}y)</math> from the properties of the [[face-splitting product]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Convolution
(section)
Add topic