Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cambrian
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Climate == The distribution of climate-indicating sediments, including the wide latitudinal distribution of tropical carbonate platforms, archaeocyathan reefs and [[bauxite]]s, and arid zone [[evaporite]]s and [[Caliche|calcrete]] deposits, show{{dubious|reason=the sources do not make this claim|date=March 2025}} the Cambrian was a time of greenhouse climate conditions.<ref name="AnEarlyCambrianGreenhouseClimate">{{cite journal |last1=Hearing |first1=Thomas W. |last2=Harvey |first2=Thomas H. P. |last3=Williams |first3=Mark |last4=Leng |first4=Melanie J. |last5=Lamb |first5=Angela L. |last6=Wilby |first6=Philip R. |last7=Gabbott |first7=Sarah E. |last8=Pohl |first8=Alexandre |last9=Donnadieu |first9=Yannick |date=9 May 2018 |title=An early Cambrian greenhouse climate |journal=[[Science Advances]] |volume=4 |issue=5 |pages=eaar5690 |bibcode=2018SciA....4.5690H |doi=10.1126/sciadv.aar5690 |pmc=5942912 |pmid=29750198}}</ref><ref name="ChristopherScotese">{{Cite journal |last1=Scotese |first1=Christopher R. |last2=Song |first2=Haijun |last3=Mills |first3=Benjamin J.W. |last4=van der Meer |first4=Douwe G. |date=April 2021 |title=Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years |url=http://dx.doi.org/10.1016/j.earscirev.2021.103503 |journal=[[Earth-Science Reviews]] |volume=215 |pages=103503 |bibcode=2021ESRv..21503503S |doi=10.1016/j.earscirev.2021.103503 |issn=0012-8252 |s2cid=233579194 |archive-url=https://web.archive.org/web/20210108000000/http://dx.doi.org/10.1016/j.earscirev.2021.103503 |archive-date=8 January 2021}} [https://eprints.whiterose.ac.uk/169823/ Alt URL]</ref> During the late Cambrian the distribution of [[trilobite]] provinces also indicate only a moderate pole-to-equator temperature gradient.<ref name="ChristopherScotese" /> There is evidence of glaciation at high latitudes on Avalonia. However, it is unclear whether these sediments are early Cambrian or actually late Neoproterozoic in age.<ref name="AnEarlyCambrianGreenhouseClimate" /> Calculations of global average temperatures (GAT) vary depending on which techniques are used. Whilst some measurements show GAT over c. {{convert|40|°C|°F|abbr=on}} models that combine multiple sources give GAT of c. {{convert|20|-|22|C|F}} in the Terreneuvian increasing to c. {{convert|23|-|25|C|F}} for the rest of the Cambrian.<ref name="ChristopherScotese" /><ref name="Pruss-2024">{{Cite journal |last1=Pruss |first1=Sara B. |last2=Gill |first2=Benjamin C. |date=2024-05-30 |title=Life on the Edge: The Cambrian Marine Realm and Oxygenation |url=https://www.annualreviews.org/doi/10.1146/annurev-earth-031621-070316 |journal=Annual Review of Earth and Planetary Sciences |language=en |volume=52 |issue=1 |pages=109–132 |doi=10.1146/annurev-earth-031621-070316 |bibcode=2024AREPS..52..109P |hdl=10919/117422 |issn=0084-6597|hdl-access=free }}</ref> The warm climate was linked to elevated atmospheric [[carbon dioxide]] levels. Assembly of Gondwana led to the reorganisation of the tectonic plates with the development of new convergent plate margins and continental-margin arc magmatism that helped drive climatic warming.<ref name="Pruss-2024" /><ref name="Myrow-2024">{{Cite journal |last1=Myrow |first1=Paul M. |last2=Goodge |first2=John W. |last3=Brock |first3=Glenn A. |last4=Betts |first4=Marissa J. |last5=Park |first5=Tae-Yoon S. |last6=Hughes |first6=Nigel C. |last7=Gaines |first7=Robert R. |title=Tectonic trigger to the first major extinction of the Phanerozoic: The early Cambrian Sinsk event |journal=Science Advances |date=2024 |volume=10 |issue=13 |pages=eadl3452 |doi=10.1126/sciadv.adl3452 |issn=2375-2548 |pmid=38552008|pmc=10980278 |bibcode=2024SciA...10L3452M }}</ref> The eruptions of the Kalkarindji LIP [[basalt]]s during Stage 4 and into the early Miaolingian, also released large quantities of carbon dioxide, [[methane]] and [[Sulfur dioxide|sulphur dioxide]] into the atmosphere leading to rapid climatic changes and elevated sea surface temperatures.<ref name="Myrow-2024" /> There is uncertainty around the maximum sea surface temperatures. These are calculated using [[Δ18O|δ<sup>18</sup>O]] values from marine rocks, and there is an ongoing debate about the levels δ<sup>18</sup>O in Cambrian seawater relative to the rest of the Phanerozoic.<ref name="ChristopherScotese" /><ref name="Wotte-2019">{{Cite journal |last1=Wotte |first1=Thomas |last2=Skovsted |first2=Christian B. |last3=Whitehouse |first3=Martin J. |last4=Kouchinsky |first4=Artem |date=2019-04-19 |title=Isotopic evidence for temperate oceans during the Cambrian Explosion |journal=Scientific Reports |language=en |volume=9 |issue=1 |pages=6330 |doi=10.1038/s41598-019-42719-4 |pmid=31004083 |pmc=6474879 |bibcode=2019NatSR...9.6330W |issn=2045-2322}}</ref> Estimates for tropical sea surface temperatures vary from c. {{convert|28|-|32|C|F}},<ref name="ChristopherScotese" /><ref name="Wotte-2019" /> to c. {{convert|29|-|38|C|F}}.<ref>{{Cite journal |last1=Bergmann |first1=Kristin D. |last2=Finnegan |first2=Seth |last3=Creel |first3=Roger |last4=Eiler |first4=John M. |last5=Hughes |first5=Nigel C. |last6=Popov |first6=Leonid E. |last7=Fischer |first7=Woodward W. |date=2018 |title=A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition |url=https://doi.org/10.1016/j.gca.2017.11.015 |journal=Geochimica et Cosmochimica Acta |volume=224 |pages=18–41 |doi=10.1016/j.gca.2017.11.015 |bibcode=2018GeCoA.224...18B |issn=0016-7037}}</ref><ref name="AnEarlyCambrianGreenhouseClimate" /> Modern average tropical sea surface temperatures are {{convert|26|°C|°F|abbr=on}}.<ref name="ChristopherScotese" /> Atmospheric oxygen levels rose steadily rising from the Neoproterozoic due to the increase in [[photosynthesis]]ing organisms. Cambrian levels varied between c. 3% and 14% (present day levels are c. 21%). Low levels of atmospheric oxygen and the warm climate resulted in lower dissolved oxygen concentrations in marine waters and widespread [[Anoxic waters|anoxia]] in deep ocean waters.<ref name="Pruss-2024" /><ref name="Mills-2023">{{Cite journal |last1=Mills |first1=Benjamin J.W. |last2=Krause |first2=Alexander J. |last3=Jarvis |first3=Ian |last4=Cramer |first4=Bradley D. |date=2023-05-31 |title=Evolution of Atmospheric O 2 Through the Phanerozoic, Revisited |url=https://www.annualreviews.org/doi/10.1146/annurev-earth-032320-095425 |journal=Annual Review of Earth and Planetary Sciences |language=en |volume=51 |issue=1 |pages=253–276 |doi=10.1146/annurev-earth-032320-095425 |issn=0084-6597}}</ref> There is a complex relationship between oxygen levels, the [[biogeochemistry]] of ocean waters, and the evolution of life. Newly evolved burrowing organisms exposed anoxic sediments to the overlying oxygenated seawater. This [[bioturbation]] decreased the burial rates of organic carbon and [[Sulfur|sulphur]], which over time reduced atmospheric and oceanic oxygen levels, leading to widespread anoxic conditions.<ref name="van de Velde-2018">{{Cite journal |last1=van de Velde |first1=Sebastiaan |last2=Mills |first2=Benjamin J. W. |last3=Meysman |first3=Filip J. R. |last4=Lenton |first4=Timothy M. |last5=Poulton |first5=Simon W. |date=2018-07-02 |title=Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing |journal=Nature Communications |language=en |volume=9 |issue=1 |pages=2554 |doi=10.1038/s41467-018-04973-4 |pmid=29967319 |pmc=6028391 |bibcode=2018NatCo...9.2554V |issn=2041-1723}}</ref> Periods of higher rates of continental [[weathering]] led to increased delivery of nutrients to the oceans, boosting productivity of [[phytoplankton]] and stimulating metazoan evolution. However, rapid increases in nutrient supply led to [[eutrophication]], where rapid growth in phytoplankton numbers result in the depletion of oxygen in the surrounding waters.<ref name="Pruss-2024" /><ref name="Wood-2019">{{Cite journal |last1=Wood |first1=Rachel |last2=Liu |first2=Alexander G. |last3=Bowyer |first3=Frederick |last4=Wilby |first4=Philip R. |last5=Dunn |first5=Frances S. |last6=Kenchington |first6=Charlotte G. |last7=Cuthill |first7=Jennifer F. Hoyal |last8=Mitchell |first8=Emily G. |last9=Penny |first9=Amelia |date=2019 |title=Integrated records of environmental change and evolution challenge the Cambrian Explosion |url=https://www.nature.com/articles/s41559-019-0821-6 |journal=Nature Ecology & Evolution |language=en |volume=3 |issue=4 |pages=528–538 |doi=10.1038/s41559-019-0821-6 |pmid=30858589 |bibcode=2019NatEE...3..528W |issn=2397-334X|hdl=20.500.11820/a4e98e0f-a350-40f6-9ee6-49d4f816835f |hdl-access=free }}</ref> Pulses of increased oxygen levels are linked to increased biodiversity; raised oxygen levels supported the increasing [[Metabolism|metabolic]] demands of organisms, and increased [[ecological niche]]s by expanding habitable areas of seafloor. Conversely, incursions of oxygen-deficient water, due to changes in sea level, ocean circulation, upwellings from deeper waters and/or biological productivity, produced anoxic conditions that limited habitable areas, reduced ecological niches and resulted in extinction events both regional and global.<ref name="Mills-2023" /><ref name="van de Velde-2018" /><ref name="Wood-2019" /> Overall, these dynamic, fluctuating environments, with global and regional anoxic incursions resulting in extinction events, and periods of increased oceanic oxygenation stimulating biodiversity, drove evolutionary innovation.<ref name="van de Velde-2018" /><ref name="Pruss-2024" /><ref name="Wood-2019" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cambrian
(section)
Add topic