Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Atomic orbital
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relativistic effects === {{Main|Relativistic quantum chemistry}} {{See also|Extended periodic table}} For elements with high atomic number {{mvar|Z}}, the effects of relativity become more pronounced, and especially so for s electrons, which move at relativistic velocities as they penetrate the screening electrons near the core of high-{{mvar|Z}} atoms. This relativistic increase in momentum for high speed electrons causes a corresponding decrease in wavelength and contraction of 6s orbitals relative to 5d orbitals (by comparison to corresponding s and d electrons in lighter elements in the same column of the periodic table); this results in 6s valence electrons becoming lowered in energy. Examples of significant physical outcomes of this effect include the lowered melting temperature of [[mercury (element)|mercury]] (which results from 6s electrons not being available for metal bonding) and the golden color of gold and [[caesium]].<ref>{{cite web|url=http://www.chem1.com/acad/webtut/atomic/qprimer/#Q26|title= Primer on Quantum Theory of the Atom|first=Stephen |last=Lower}}</ref> In the [[Bohr model]], an {{math|1=''n'' = 1}} electron has a velocity given by <math>v = Z \alpha c</math>, where {{mvar|Z}} is the atomic number, <math>\alpha</math> is the [[fine-structure constant]], and {{math|''c''}} is the speed of light. In non-relativistic quantum mechanics, therefore, any atom with an atomic number greater than 137 would require its 1s electrons to be traveling faster than the speed of light. Even in the [[Dirac equation]], which accounts for relativistic effects, the wave function of the electron for atoms with <math>Z > 137</math> is oscillatory and [[unbounded function|unbounded]]. The significance of element 137, also known as [[untriseptium]], was first pointed out by the physicist [[Richard Feynman]]. Element 137 is sometimes informally called [[feynmanium]] (symbol Fy).<ref>{{cite journal|last1=Poliakoff|first1=Martyn|last2=Tang|first2=Samantha|title=The periodic table: icon and inspiration|journal=Philosophical Transactions of the Royal Society A|date=9 February 2015|volume=373|issue=2037|page=20140211|doi=10.1098/rsta.2014.0211|pmid=25666072|bibcode = 2015RSPTA.37340211P |doi-access=free}}</ref> However, Feynman's approximation fails to predict the exact critical value of {{mvar|Z}} due to the non-point-charge nature of the nucleus and very small orbital radius of inner electrons, resulting in a potential seen by inner electrons which is effectively less than {{mvar|Z}}. The critical {{mvar|Z}} value, which makes the atom unstable with regard to high-field breakdown of the vacuum and production of electron-positron pairs, does not occur until {{mvar|Z}} is about 173. These conditions are not seen except transiently in collisions of very heavy nuclei such as lead or uranium in accelerators, where such electron-positron production from these effects has been claimed to be observed. There are no nodes in relativistic orbital densities, although individual components of the wave function will have nodes.<ref>{{cite journal|doi=10.1021/ed046p678|title=Contour diagrams for relativistic orbitals|year=1969|last1=Szabo|first1=Attila|journal=Journal of Chemical Education|volume=46|issue=10|pages=678|bibcode = 1969JChEd..46..678S }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Atomic orbital
(section)
Add topic