Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Amphetamine
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Behavioral treatments===== A 2018 systematic review and [[network meta-analysis]] of 50 trials involving 12 different psychosocial interventions for amphetamine, methamphetamine, or cocaine addiction found that [[combination therapy]] with both [[contingency management]] and [[community reinforcement approach]] had the highest efficacy (i.e., abstinence rate) and acceptability (i.e., lowest dropout rate).<ref name="Psychosocial interventions network meta-analysis">{{cite journal | vauthors = De Crescenzo F, Ciabattini M, D'Alò GL, De Giorgi R, Del Giovane C, Cassar C, Janiri L, Clark N, Ostacher MJ, Cipriani A | title = Comparative efficacy and acceptability of psychosocial interventions for individuals with cocaine and amphetamine addiction: A systematic review and network meta-analysis | journal = PLOS Medicine | volume = 15 | issue = 12 | pages = e1002715 | date = December 2018 | pmid = 30586362 | pmc = 6306153 | doi = 10.1371/journal.pmed.1002715 | doi-access = free | title-link = doi }}</ref> Other treatment modalities examined in the analysis included [[monotherapy]] with contingency management or community reinforcement approach, [[cognitive behavioral therapy]], [[12-step program]]s, non-contingent reward-based therapies, [[psychodynamic therapy]], and other combination therapies involving these.<ref name="Psychosocial interventions network meta-analysis" /> Additionally, research on the [[neurobiological effects of physical exercise]] suggests that daily aerobic exercise, especially endurance exercise (e.g., [[marathon running]]), prevents the development of drug addiction and is an effective [[adjunct therapy]] (i.e., a supplemental treatment) for amphetamine addiction.{{#tag:ref|<ref name="Natural and drug addictions" /><ref name="Running vs addiction" /><ref name="Exercise, addiction prevention, and ΔFosB" /><ref name="Exercise Rev 3" /><ref name="Addiction review 2016" />|group="sources"|name="Exercise therapy"}} Exercise leads to better treatment outcomes when used as an adjunct treatment, particularly for psychostimulant addictions.<ref name="Running vs addiction">{{cite journal |vauthors=Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA | title = Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis | journal =Neuroscience & Biobehavioral Reviews| volume = 37 | issue = 8 | pages = 1622–1644 |date=September 2013 | pmid = 23806439 | pmc = 3788047 | doi = 10.1016/j.neubiorev.2013.06.011 | quote = These findings suggest that exercise may "magnitude"-dependently prevent the development of an addicted phenotype possibly by blocking/reversing behavioral and neuroadaptive changes that develop during and following extended access to the drug. ... Exercise has been proposed as a treatment for drug addiction that may reduce drug craving and risk of relapse. Although few clinical studies have investigated the efficacy of exercise for preventing relapse, the few studies that have been conducted generally report a reduction in drug craving and better treatment outcomes ... Taken together, these data suggest that the potential benefits of exercise during relapse, particularly for relapse to psychostimulants, may be mediated via chromatin remodeling and possibly lead to greater treatment outcomes.}}</ref><ref name="Exercise Rev 3">{{cite journal | vauthors = Linke SE, Ussher M | title = Exercise-based treatments for substance use disorders: evidence, theory, and practicality | journal =The American Journal of Drug and Alcohol Abuse| volume = 41 | issue = 1 | pages = 7–15 | date = January 2015 | pmid = 25397661 | doi = 10.3109/00952990.2014.976708 | quote = The limited research conducted suggests that exercise may be an effective adjunctive treatment for SUDs. In contrast to the scarce intervention trials to date, a relative abundance of literature on the theoretical and practical reasons supporting the investigation of this topic has been published. ... numerous theoretical and practical reasons support exercise-based treatments for SUDs, including psychological, behavioral, neurobiological, nearly universal safety profile, and overall positive health effects. | pmc=4831948}}</ref><ref name="Addiction review 2016">{{cite journal | vauthors = Carroll ME, Smethells JR | title = Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments | journal =Frontiers in Psychiatry| volume = 6 | pages = 175 | date = February 2016 | pmid = 26903885 | pmc = 4745113 | doi = 10.3389/fpsyt.2015.00175 | quote = Physical Exercise<br />There is accelerating evidence that physical exercise is a useful treatment for preventing and reducing drug addiction ... In some individuals, exercise has its own rewarding effects, and a behavioral economic interaction may occur, such that physical and social rewards of exercise can substitute for the rewarding effects of drug abuse. ... The value of this form of treatment for drug addiction in laboratory animals and humans is that exercise, if it can substitute for the rewarding effects of drugs, could be self-maintained over an extended period of time. Work to date in [laboratory animals and humans] regarding exercise as a treatment for drug addiction supports this hypothesis. ... Animal and human research on physical exercise as a treatment for stimulant addiction indicates that this is one of the most promising treatments on the horizon.| doi-access = free | title-link = doi }}</ref> In particular, [[aerobic exercise]] decreases psychostimulant self-administration, reduces the [[reinstatement]] (i.e., relapse) of drug-seeking, and induces increased [[dopamine receptor D2|dopamine receptor D<sub>2</sub>]] (DRD2) density in the [[striatum]].<ref name="Natural and drug addictions" /><ref name="Addiction review 2016" /> This is the opposite of pathological stimulant use, which induces decreased striatal DRD2 density.<ref name="Natural and drug addictions">{{cite journal | author = Olsen CM | title = Natural rewards, neuroplasticity, and non-drug addictions | journal =Neuropharmacology| volume = 61 | issue = 7 | pages = 1109–1122 | date = December 2011 | pmid = 21459101 | pmc = 3139704 | doi = 10.1016/j.neuropharm.2011.03.010 | quote = Similar to environmental enrichment, studies have found that exercise reduces self-administration and relapse to drugs of abuse (Cosgrove et al., 2002; Zlebnik et al., 2010). There is also some evidence that these preclinical findings translate to human populations, as exercise reduces withdrawal symptoms and relapse in abstinent smokers (Daniel et al., 2006; Prochaska et al., 2008), and one drug recovery program has seen success in participants that train for and compete in a marathon as part of the program (Butler, 2005). ... In humans, the role of dopamine signaling in incentive-sensitization processes has recently been highlighted by the observation of a dopamine dysregulation syndrome in some patients taking dopaminergic drugs. This syndrome is characterized by a medication-induced increase in (or compulsive) engagement in non-drug rewards such as gambling, shopping, or sex (Evans et al., 2006; Aiken, 2007; Lader, 2008). }}</ref> One review noted that exercise may also prevent the development of a drug addiction by altering ΔFosB or {{nowrap|[[c-Fos]]}} [[immunoreactivity]] in the striatum or other parts of the [[reward system]].<ref name="Exercise, addiction prevention, and ΔFosB" /> {{FOSB addiction table|Table title=Summary of addiction-related plasticity}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Amphetamine
(section)
Add topic