Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Adjoint functors
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Category theory==== * '''Equivalences.''' If ''F'' : ''D'' → ''C'' is an [[equivalence of categories]], then we have an inverse equivalence ''G'' : ''C'' → ''D'', and the two functors ''F'' and ''G'' form an adjoint pair. The unit and counit are natural isomorphisms in this case. If η : id → ''GF'' and ε : ''GF'' → id are natural isomorphisms, then there exist unique natural isomorphisms ε' : ''GF'' → id and η' : id → ''GF'' for which (η, ε') and (η', ε) are counit–unit pairs for ''F'' and ''G''; they are *:<math>\varepsilon'=\varepsilon\circ(F\eta^{-1}G)\circ(FG\varepsilon^{-1})</math> *:<math>\eta'=(GF\eta^{-1})\circ(G\varepsilon^{-1}F)\circ\eta</math> * '''A series of adjunctions.''' The functor π<sub>0</sub> which assigns to a category its set of connected components is left-adjoint to the functor ''D'' which assigns to a set the discrete category on that set. Moreover, ''D'' is left-adjoint to the object functor ''U'' which assigns to each category its set of objects, and finally ''U'' is left-adjoint to ''A'' which assigns to each set the indiscrete category<ref>{{cite web |title=Indiscrete category |url=http://ncatlab.org/nlab/show/indiscrete+category |website=nLab}}</ref> on that set. * '''Exponential object'''. In a [[cartesian closed category]] the endofunctor ''C'' → ''C'' given by –×''A'' has a right adjoint –<sup>''A''</sup>. This pair is often referred to as [[currying]] and uncurrying; in many special cases, they are also continuous and form a homeomorphism. <!--* '''Limits and Colimits.''' Limits and colimits can actually be viewed using adjoints when looking at functor categories. If C and D are two categories, then the functor '''limit''' from the category of functors from C to D to the category of constant functors from C to D which takes a given functor from C to D to its limit is in fact right-adjoint to the forgetful functor from the category of constant functors from C to D to the category of functors from C to D. Colimit is similarly the left-adjoint of this forgetful functor from the category of constant functors from C to D to the category of functors from C to D. -->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Adjoint functors
(section)
Add topic