Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Wheatstone bridge
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Derivation == [[File:Wheatstonebridge current.svg|thumb|300px|Directions of currents arbitrarily assigned]] === Quick derivation at balance === At the point of balance, both the [[voltage]] and the [[Electric current|current]] between the two midpoints (B and D) are zero. Therefore, {{math|1=''I''<sub>1</sub> = ''I''<sub>2</sub>}}, {{math|1=''I''<sub>3</sub> = ''I''<sub>''x''</sub>}}, {{math|1=''V''<sub>D</sub> = ''V''<sub>B</sub>}}. Because of {{math|1=''V''<sub>D</sub> = ''V''<sub>B</sub>}}, then {{math|1=''V''<sub>DC</sub> = ''V''<sub>BC</sub>}} and {{math|1=''V''<sub>AD</sub> = ''V''<sub>AB</sub>}}. Dividing the last two equations by members and using the above currents equalities, then : <math>\begin{align} \frac{V_{DC}}{V_{AD}}&=\frac{V_{BC}}{V_{AB}} \\[4pt] \Rightarrow \frac{I_2R_2}{I_1R_1} &= \frac{I_xR_x}{I_3R_3}\\[4pt] \Rightarrow R_x &= \frac{R_2}{R_1} \cdot R_3 \end{align}</math> === Alternative Derivation at Balance using Voltage Divider Expressions === ADC and ABC form two [[voltage divider]]s, with <math> V_G </math> equal to the difference in output voltages. Thus : <math>\begin{align} V_{DC} &= V_{BC} \\ I_2 R_2 &= I_x R_x \\ V_{AC} \frac{R_2}{R_1 + R_2} &= V_{AC} \frac{R_x}{R_3 + R_x} \\ \frac{R_2}{R_1 + R_2} &= \frac{R_x}{R_3 + R_x} \\ \frac{R_1 + R_2}{R_2} &= \frac{R_3 + R_x}{R_x} \\ 1 + \frac{R_1}{R_2} &= 1 + \frac{R_3}{R_x} \\ \frac{R_1}{R_2} &= \frac{R_3}{R_x} \\ \end{align}</math> === Full derivation using Kirchhoff's circuit laws === First, [[Kirchoff's first law|Kirchhoff's first law]] is used to find the currents in junctions B and D: : <math>\begin{align} I_3 - I_x + I_G &= 0 \\ I_1 - I_2 - I_G &= 0 \end{align}</math> Then, [[Kirchhoff's circuit laws#Kirchhoff's voltage law (KVL)|Kirchhoff's second law]] is used for finding the voltage in the loops ABDA and BCDB: : <math>\begin{align} (I_3 \cdot R_3) - (I_G \cdot R_G) - (I_1 \cdot R_1) &= 0 \\ (I_x \cdot R_x) - (I_2 \cdot R_2) + (I_G \cdot R_G) &= 0 \end{align}</math> When the bridge is balanced, then {{math|''I''<sub>''G''</sub> {{=}} 0}}, so the second set of equations can be rewritten as: : <math>\begin{align} I_3 \cdot R_3 &= I_1 \cdot R_1 \quad \text{(1)} \\ I_x \cdot R_x &= I_2 \cdot R_2 \quad \text{(2)} \end{align}</math> Then, equation (1) is divided by equation (2) and the resulting equation is rearranged, giving: : <math>R_x = {{R_2 \cdot I_2 \cdot I_3 \cdot R_3}\over{R_1 \cdot I_1 \cdot I_x}}</math> Due to {{math|1=''I''<sub>3</sub> = ''I''<sub>''x''</sub>}} and {{math|1=''I''<sub>1</sub> = ''I''<sub>2</sub>}} being proportional from Kirchhoff's First Law, {{math|''I''<sub>3</sub>''I''<sub>2</sub>/''I''<sub>1</sub>''I''<sub>x</sub>}} cancels out of the above equation. The desired value of {{math|''R''<sub>''x''</sub>}} is now known to be given as: : <math>R_x = {{R_3 \cdot R_2}\over{R_1}}</math> On the other hand, if the resistance of the galvanometer is high enough that {{math|''I''<sub>''G''</sub>}} is negligible, it is possible to compute {{math|''R''<sub>''x''</sub>}} from the three other resistor values and the supply voltage ({{math|''V''<sub>''S''</sub>}}), or the supply voltage from all four resistor values. To do so, one has to work out the voltage from each [[potential divider]] and subtract one from the other. The equations for this are: : <math> \begin{align} V_G & = \left({R_2\over{R_1 + R_2}} - {R_x \over {R_x + R_3}}\right)V_s \\[6pt] R_x & = {{R_2 \cdot V_s - (R_1+R_2) \cdot V_G}\over {R_1 \cdot V_s + (R_1+R_2) \cdot V_G}} R_3 \end{align} </math> where {{math|''V''<sub>''G''</sub>}} is the voltage of node D relative to node B.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Wheatstone bridge
(section)
Add topic